
Oracle® Retail Bulk Data Integration
Implementation Guide

Release 16.0.023

E89306-01

January 2018

Oracle Retail Integration Bus Implementation Guide, Release 16.0.023

E89306-01

Copyright © 2018,, Oracle and/or its affiliates. All rights reserved.

Primary Author: Sanal Parameswaran

Contributing Author: Nathan Young

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Value-Added Reseller (VAR) Language

Oracle Retail VAR Applications

The following restrictions and provisions only apply to the programs referred to in this section and licensed
to you. You acknowledge that the programs may contain third party software (VAR applications) licensed to
Oracle. Depending upon your product and its version number, the VAR applications may include:

(i) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail Data
Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(ii) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of Kirkland,
Washington, to Oracle and imbedded in Oracle Retail Mobile Store Inventory Management.

(iii) the software component known as Access Via™ licensed by Access Via of Seattle, Washington, and
imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(iv) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of San Jose,
California, and imbedded in Oracle Retail Promotion Planning & Optimization application.

You acknowledge and confirm that Oracle grants you use of only the object code of the VAR Applications.
Oracle will not deliver source code to the VAR Applications to you. Notwithstanding any other term or
condition of the agreement and this ordering document, you shall not cause or permit alteration of any VAR

Applications. For purposes of this section, "alteration" refers to all alterations, translations, upgrades,
enhancements, customizations or modifications of all or any portion of the VAR Applications including all
reconfigurations, reassembly or reverse assembly, re-engineering or reverse engineering and recompilations
or reverse compilations of the VAR Applications or any derivatives of the VAR Applications. You
acknowledge that it shall be a breach of the agreement to utilize the relationship, and/or confidential
information of the VAR Applications for purposes of competitive discovery.

The VAR Applications contain trade secrets of Oracle and Oracle's licensors and Customer shall not attempt,
cause, or permit the alteration, decompilation, reverse engineering, disassembly or other reduction of the
VAR Applications to a human perceivable form. Oracle reserves the right to replace, with functional
equivalent software, any of the VAR Applications in future releases of the applicable program.

v

Contents

Send Us Your Comments .. xi

Preface ... xiii

Audience... xiii
Documentation Accessibility ... xiii
Customer Support ... xiii
Review Patch Documentation .. xiv
Improved Process for Oracle Retail Documentation Corrections ... xiv
Oracle Retail Documentation on the Oracle Technology Network .. xiv
Conventions .. xiv

1 Introduction

Oracle Retail Enterprise Integration Products and Styles.. 1-1
Standards and Specifications... 1-2

Java Platform Enterprise Edition (Java EE) .. 1-2
Java Batch – JSR 352 ... 1-2
Java EE Server... 1-3
Java Batch Overview.. 1-3

2 Job Administrator

Job Admin Core Components.. 2-1
Extractor Job.. 2-1
Downloader-Transporter job.. 2-2
Receiver Service.. 2-9
Uploader Job ... 2-9
Uploader Job Configuration ... 2-12
Importer Job ... 2-14

3 Job Admin Services

Job Admin RESTful Services ... 3-1
Receiver Service.. 3-1
Batch Service ... 3-7
Data Service.. 3-10
Configuration of Job Admin.. 3-12

vi

Job Admin Customization ... 3-12

4 Job Admin UI

Job Admin UI Security .. 4-1
Authentication .. 4-1
Authorization.. 4-1

Monitoring Batch Jobs Using BDI Job Admin ... 4-2
Batch Summary Tab... 4-2
Manage Jobs Tab .. 4-2
Job Executions... 4-3
Job Launch... 4-3
Job Details.. 4-4
System Logs Tab... 4-4
Diagonostics Tab .. 4-6
Outbound Job Execution Errors... 4-6
Inbound Job Execution Errors .. 4-7
Trace Data.. 4-7

Manage Configurations ... 4-10
Outbound Interface Controls .. 4-11
Inbound Interface Controls.. 4-11
System Options.. 4-12

Job Admin Troubleshooting.. 4-12
BDI apps deployment Error... 4-12
BDI Job Admin runtime WSMException... 4-13
REST Service from SOAP UI for Downloader and Transporter job 4-13
BDI Job Admin not able to find UploaderJob.xml file... 4-13
Job Fails and Job Admin Log Files Contain No Details of the Failure 4-14

5 Process Flow

Process Flow ... 5-1
DSL (Domain Specific Language) .. 5-2
Process Flow DSL... 5-3
Process Flow Instrumentation.. 5-8
Process Flow Monitor Web Application... 5-8
Persisting Process Notifications .. 5-14
Process Restart ... 5-14
Statuses ... 5-15
Activity Features ... 5-15
Process Execution Trace ... 5-25
Process Metrics Service... 5-26
Process Security ... 5-28

Customizing Process Flows ... 5-28
Process Flow DSL.. 5-28
APIs ... 5-29
How to modify a Process Flow ... 5-29

Sub Processes ... 5-29
Process Schema.. 5-29

vii

Process Customization ... 5-30
REST Interface.. 5-31
Troubleshooting .. 5-31
Process FlowDidNot Start.. 5-32
Deleted process flow still listed in the UI .. 5-32
Best Practices for Process Flow DSL... 5-32

6 BDI Scheduler

Scheduler Core Concepts .. 6-1
Schedule Types ... 6-1
Scheduling Mechanisms.. 6-2
Schedule Frequency ... 6-3
Schedule Action.. 6-4
Schedule Action Type.. 6-5
Schedule Status... 6-6

Scheduler Runtime ... 6-6
Scheduler Startup... 6-6
Schedule Runtime Execution.. 6-7
Schedule Execution - BDI Process Flows.. 6-7
Schedule Execution - Async Action... 6-8
Schedule Execution - Sync Action ... 6-9
Schedule Execution Failover.. 6-10
Schedule Notification ... 6-10
Persisting Schedule Notifications ... 6-10

Scheduler Infrastructure Schema ... 6-11
Scheduler REST Services ... 6-11
Scheduler Console... 6-12

..Schedule Summary 6-12
Manage Schedules... 6-14
Scheduler Security Considerations... 6-22
Scheduler Operational Considerations .. 6-23
Scheduler Customization... 6-24
Customizing Schedule Actions ... 6-26
Scheduler Troubleshooting.. 6-27
Scheduler Known issues .. 6-27

7 CLI Tools

BDI CLI Job Executor .. 7-1
Tool Setup.. 7-1
Tool Usage... 7-2

BDI CLI Transmitter .. 7-2
Tool Setup.. 7-2
Tool Usage... 7-4
File Processing .. 7-6
Output Logs .. 7-6
Error Reprocessing... 7-7

viii

8 BDI Data Integration Topologies

Point to Point Topology... 8-1
Sender side split ... 8-2
Receiver Side Split ... 8-3

9 Pre-implementation Considerations

BDI Software Lifecycle Management .. 9-1
Preparation Phase .. 9-1
Application Assembly Phase.. 9-1
Deployment Phase ... 9-1
Operation Phase ... 9-1
Maintenance Phase... 9-1

Physical Location Considerations ... 9-2
High Availability Considerations.. 9-2
WebLogic Server Cluster Concepts ... 9-2
bdi-<app> application and WebLogic Application Server Cluster .. 9-3
Logging.. 9-3
Update Log Level ... 9-4
Create/Update/Delete System Options... 9-4
Create/Update/Delete System Credentials... 9-4
Scheduler Configuration Changes for Cluster... 9-5

10 Deployment Architecture and Options

Recommended Deployment Options.. 10-1
Distributed ... 10-1
Centralized ... 10-2
BDI-External Application... 10-3
Installation details ... 10-4

11 Implementation Process

12 Performance Considerations

Performance Tuning Downloader-Transporter Jobs... 12-1
Performance Tuning Uploader Jobs... 12-2

13 Job Admin REST Endpoints

A Process Schema

B Process Flow REST Endpoints

C Scheduler REST Endpoints

D System Setting Service

Managing System Options using curl... D-2

ix

Create system option .. D-2
Update system option... D-2
Delete system option .. D-2
List system options ... D-2

Managing credentials using curl .. D-2
Create credential.. D-2
Update credential .. D-3
Delete credential.. D-3
List Credentials.. D-3

E Sample Extractor - PL/SQL application code that calls procedures in PL/SQL
package

F Glossary

x

xi

Send UsYour Comments

Oracle Retail Bulk Data Integration Implementation Guide, Release 16.0.023

Oracle welcomes customers' comments and suggestions on the quality and usefulness
of this document.

Your feedback is important, and helps us to best meet your needs as a user of our
products. For example:

■ Are the implementation steps correct and complete?

■ Did you understand the context of the procedures?

■ Did you find any errors in the information?

■ Does the structure of the information help you with your tasks?

■ Do you need different information or graphics? If so, where, and in what format?

■ Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell
us your name, the name of the company who has licensed our products, the title and
part number of the documentation and the chapter, section, and page number (if
available).

Send your comments to us using the electronic mail address: retail-doc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number
(optional).

If you need assistance with Oracle software, then please contact your support
representative or Oracle Support Services.

If you require training or instruction in using Oracle software, then please contact your
Oracle local office and inquire about our Oracle University offerings. A list of Oracle
offices is available on our Web site at www.oracle.com.

Note: Before sending us your comments, you might like to check
that you have the latest version of the document and if any concerns
are already addressed. To do this, access the new Applications Release
Online Documentation CD available on My Oracle Support and
www.oracle.com. It contains the most current Documentation Library
plus all documents revised or released recently.

xii

xiii

Preface

The Oracle Retail Bulk Data Integration Implementation Guide provides detailed
information that is important when implementing BDI.

Audience
The Implementation Guide is intended for the Oracle Retail Bulk Data Integration
application integrators and implementation staff, as well as the retailer’s IT personnel.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Customer Support
To contact Oracle Customer Support, access My Oracle Support at the following URL:

https://support.oracle.com

When contacting Customer Support, please provide the following:

■ Product version and program/module name

■ Functional and technical description of the problem (include business impact)

■ Detailed step-by-step instructions to re-create

■ Exact error message received

■ Screen shots of each step you take

xiv

Review Patch Documentation
When you install the application for the first time, you install either a base release (for
example, 16.0) or a later patch release (for example, 16.0.023). If you are installing the
base release and additional patch releases, read the documentation for all releases that
have occurred since the base release before you begin installation. Documentation for
patch releases can contain critical information related to the base release, as well as
information about code changes since the base release.

Improved Process for Oracle Retail Documentation Corrections
To more quickly address critical corrections to Oracle Retail documentation content,
Oracle Retail documentation may be republished whenever a critical correction is
needed. For critical corrections, the republication of an Oracle Retail document may at
times not be attached to a numbered software release; instead, the Oracle Retail
document will simply be replaced on the Oracle Technology Network Web site, or, in
the case of Data Models, to the applicable My Oracle Support Documentation
container where they reside.

This process will prevent delays in making critical corrections available to customers.
For the customer, it means that before you begin installation, you must verify that you
have the most recent version of the Oracle Retail documentation set. Oracle Retail
documentation is available on the Oracle Technology Network at the following URL:

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.ht
ml

An updated version of the applicable Oracle Retail document is indicated by Oracle
part number, as well as print date (month and year). An updated version uses the
same part number, with a higher-numbered suffix. For example, part number
E123456-02 is an updated version of a document with part number E123456-01.

If a more recent version of a document is available, that version supersedes all
previous versions.

Oracle Retail Documentation on the Oracle Technology Network
Oracle Retail product documentation is available on the following web site:

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.ht
ml
(Data Model documents are not available through Oracle Technology Network. You
can obtain them through My Oracle Support.)

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction 1-1

1Introduction

Bulk Data Integration (BDI) is the Oracle Retail Enterprise Integration Infrastructure
product designed to address the complexities of the movement of bulk data between
Oracle Retail applications and third-party applications.

BDI is designed to provide the bulk data integration to meet the modern needs of
cloud and on-premise movement of large data sets in the deployments of the Oracle
Retail applications and fully support both on-premise configurations and on-cloud
configurations in a hybrid cloud-premise deployment.

Oracle Retail Enterprise Integration Products and Styles
There is no one integration approach that addresses all criteria equally well. Therefore,
multiple approaches for integrating applications have evolved over time. Oracle Retail
has focused on three main integration styles:

■ Asynchronous JMS Pub/Sub Fire-and-Forget (Retail Integration Bus - RIB)

■ Request/Response (Retail Service Backbone - RSB)

■ Bulk Data Integration - BDI

Batch (Bulk) data is still a predominant integration style within Oracle Retail and its
Customers.

The movement of bulk data remains important because some work is best suited to
being performed in bulk. Batch processing was there in the early days; it's still here
today; and it will still be here tomorrow. What has changed is the approach to batch
processing.

Batch processing is typified by bulk-oriented, non-interactive, background execution.
Frequently long running, it may be data or computationally intensive, executed
sequentially or in parallel, and may be initiated through various invocation models,
including ad hoc, scheduled, and on-demand.

Batch applications have common requirements including logging, checkpoint, and
parallelization. Batch workloads have common requirements such as operational
control, which allow for initiation of, and interaction with, batch instances; such
interactions include stop and restart.

BDI is the latest Oracle Retail Integration product to be released to productize Oracle
Retail bulk data flows for delivery to customers to meet these requirements, and
provide the tooling that is required to automate the creation and packaging of the
configurations and to manage the full life cycle.

Oracle Retail now has integration products designed and built to satisfy all three of the
integration styles used by our customers today.

Standards and Specifications

1-2 Oracle Retail Bulk Data Integration Implementation Guide

Standards and Specifications
BDI, such as RIB and RSB, relies on industry standards and specifications and
leverages the features of the WebLogic Application Server.

In 2011, a working group was formed to study and design an open standard for Java
batch processing. Representatives from many companies, including Oracle, developed
a draft standard. The initial release of the standard was released in 2013. The standard,
known as 352, is now included as part of the Java EE 7 open standard.

BDI is designed and built on these Java EE 7 and Java Batch (JSR 352) specifications
and standards.

Java Platform Enterprise Edition (Java EE)
Java Platform Enterprise Edition (Java EE) is an umbrella standard for Java's enterprise
computing facilities. It bundles together technologies for a complete enterprise-class
server-side development and deployment platform in java.

Java EE specification includes several other API specifications, such as JDBC, RMI,
Transaction, JMS, Web Services, XML, Persistence, mail, and others and defines how to
coordinate among them. Java EE also features some specifications unique to enterprise
computing. These include Enterprise JavaBeans (EJB), servlets, portlets, Java Server
Pages (JSP), Java Server Faces (JSF) and several Web service technologies.

A Java EE application server manages transactions, security, scalability, concurrency,
pooling, and management of the EJB/Web components that are deployed to it. This
frees the developers to concentrate more on the business logic/problem of the
components rather than spending time building scalable, robust infrastructure on
which to run on.

Java Batch – JSR 352
JSR 352 is a Java specification for building, deploying, and running batch applications.
Batch is an industry metaphor for background bulk processing. A myriad business
processes depend on batch processing and demand powerful standards-based
facilities for enabling this essential workload type.

JSR 352 specifies the layers, components and technical services commonly found in
robust, maintainable systems used to address the creation of simple to complex batch
applications.

Standards and Specifications

Introduction 1-3

JSR 352 addresses three critical concerns: a batch programming model, a job
specification language, and a batch runtime. This constitutes a separation of concerns.

■ Application developers have clear, reusable interfaces for constructing batch style
applications

■ Job writers have a powerful expression language for how to execute the steps of a
batch execution

■ Solution integrators have a runtime API for initiating and controlling batch
execution

JSR 352 defines a Job Specification Language (JSL) to define batch jobs, a set of
interfaces that describes the artifacts that comprise the batch programming model to
implement batch business logic, and a batch runtime for running batch jobs, according
to a defined life cycle.

The batch runtime is a part of the Java EE 7 runtime and has full access to all other
features of the platform, including transaction management, persistence, messaging,
and more.

Java EE Server
The Oracle WebLogic Server implements the Java EE specification and is the Java EE
server vendor for BDI. The WebLogic server provides many additional services
beyond the standard services required by the Java EE specification.

Java Batch Overview
Batch processing for Java platform was introduced in Java EE 7. It provides a
programming model for batch applications and a runtime to run and manage batch
jobs.

Batch processing is the execution of a series of programs ("jobs") on a computer
without manual intervention.

JSR 352 defines:

■ Implementation: A programming model for implementing the artifacts

■ Orchestration: A Job Specification Language, which orchestrates the execution of a
batch artifact within a job

■ Execution: A runtime environment for executing batch application, according to a
defined lifecycle

The diagram below is a simplified version of the batch reference architecture that has
been used for decades. It provides an overview of the components that make up the
domain language of batch processing.

Note: Review the WebLogic Application Server documentation for
more information:

http://docs.oracle.com/middleware/12212/wls/index.html

http://www.oracle.com/technetwork/middleware/fusion-middlewa
re/documentation/index.html

Standards and Specifications

1-4 Oracle Retail Bulk Data Integration Implementation Guide

■ The Job Operator provides an interface to manage all aspects of job processing,
including operational commands, such as start, restart, and stop, as well as job
repository related commands, such as retrieval of job and step executions.

■ The Job Repository holds information about jobs currently running and jobs that
ran in the past.

■ A step contains all the necessary logic and data to perform the actual processing.

■ A chunk-style step contains ItemReader, ItemProcessor, and ItemWriter.

A job encapsulates the batch process. A job contains one or more steps. A job is put
together using Job Specification language (JSL) that specifies the sequence in which
steps must be executed.

A step is a domain object that encapsulates an independent, sequential phase of a
batch job. Therefore, every Job is composed entirely of one or more steps. A step
contains all of the information necessary to define and control the actual batch
processing.

ItemReader is an abstraction that represents the retrieval of input for a step, one item
at a time. When the ItemReader has exhausted the items it can provide, it will indicate
this by returning null.

ItemWriter is an abstraction that represents the output of a step, one batch or chunk of
items at a time. Generally, an item writer has no knowledge of the input it will receive
next, only the item that was passed in its current invocation.

The remainder of this document describes the implementation of the BDI product
using Java Batch and JavaEE.

2

Job Administrator 2-1

2 Job Administrator

BDI Job Admin is a web application that provides the runtime and GUI for managing
batch jobs. It provides the following high level functionality.

■ RESTful service to start/restart, check status and so on of a job.

■ RESTful service to stream data from source system to destination system.

■ The Infrastructure for various bulk data integration jobs. This includes the
database for keeping track of data and the batch database for holding information
about jobs.

■ The User Interface provides ability to:

– Start/restart, and track status of jobs

– Trace data

– View Diagnostic Errors

– Manage options at job and system level

– View the logs

BDI uses instances of Job Admin to run the downloader and uploader jobs. For
example; RMS uses an instance of Job Admin to run extractor jobs whereas RXM
uses an instance of Job Admin to run importer jobs.

Job Admin Core Components
The BDI Job Admin contains the batch jobs for moving bulk data from source
(senders) systems (for example RMS) to destination (receiver) systems (for example
SIM, RXM and so on). A bulk integration flow moves data for one family from source
to destination application(s).

An Integration Flow is made up of the multiple activities: Extractor, Downloader,
Transporter, Uploader, and Importer. These activities are implemented as batch jobs.

An Extractor Job extracts data for a Family from a source system and moves data to
the outbound Interface Tables.

Outbound Interface Tables typically exist in the integration database schema and the
schema resides in the source system database.

Extractor Job
The Extractor Job uses a Batchlet and PL/SQL stored procedures to move data from
transactional tables of source system (for example RMS) to outbound tables. A
PL/SQL stored procedure calls BDI PL/SQL stored procedure to insert data set

Job Admin Core Components

2-2 Oracle Retail Bulk Data Integration Implementation Guide

information in the outbound data control tables. Extractor jobs are currently
implemented to provide full data (not delta) for an interface.

BDI Extractor (PL/SQL Application)

1. The Extractor job is run from App A (for example RMS) Extractor Job Admin
application through REST or UI.

2. The Extractor job invokes PL/SQL stored procedure in App A database.

3. A PL/SQL stored procedure is run in the App A database.

4. The PL/SQL stored procedure moves data from transactional tables to the
outbound tables in the BDI schema.

5. The PL/SQL stored procedure inserts entries in downloader data control tables to
indicate the data set is ready for download.

The Downloader Data Control Tables act as a handshake between the Extractor and
the Downloader. There are two Outbound Data Control Tables:

■ BDI_DWNLDR_IFACE_MOD_DATA_CTL

■ BDI_DWNLDR_IFACE_DATA_CTL

The Extractor job inserts entries in the downloader data control tables to indicate that
data is ready to be downloaded after it completes moving data to outbound interface
tables.

Downloader-Transporter job
A Downloader-Transporter job downloads the data set from outbound interface tables
for an Interface Module (family) and streams data to a BDI destination application
using the Receiver Service.

If there are multiple Interfaces for an Interface Module, data for all interfaces for that
interface module are downloaded and streamed concurrently to the Receiver Service
of BDI destination application.

Note: Review Appendix E.

Sample Extractor – PL/SQL application code that calls procedures in
PL/SQL package.

Job Admin Core Components

Job Administrator 2-3

BDI Downloader Transporter

1. The Downloader Transporter job is run from the BDI App A Job Admin
application through REST or UI.

2. The Downloader Transporter job checks for new data sets in Downloader Data
Control Tables.

3. If a Data Set is available for download, the Downloader Transporter job
downloads a block of data from the outbound table.

4. The Downloader Transporter job streams downloaded blocks to Receiver Service.

5. The Receiver Service stores meta data in Receiver Service database.

6. The Receiver Service creates a file for every block that it receives. Steps 3, 4, 5, and
6 repeat until there is no more data to download.

7. The Receiver Service inserts an entry in the uploader data control table indicating
that the data set is ready for upload.

Rules for processing a data set by Downloader Job

1. A full data set is available for download, if it is not processed by a downloader job
yet and if a newer full data set is not processed successfully.

2. If data set id is passed through job parameters (for example
jobParameters=dataSetId=1) to downloader job, it will use the data set if it is
available as per the above rule. Otherwise job will fail.

3. If the data set id is not passed through job parameters to downloader job, it will
identify the next available data set if there is one. Otherwise job completes without
processing any data set.

4. If the downloader-transporter job fails for whatever reason, the data set that it
tried to download can only be downloaded by restarting the job after fixing the
issues.

5. If the downloader-transporter job is started instead of a restart, it will either pick
up a new data set or none.

Job Admin Core Components

2-4 Oracle Retail Bulk Data Integration Implementation Guide

Downloader Data Sets

A Data Set consists of rows between a begin and end sequence number (bdi_seq_id
column) in the Outbound Interface Table. The BDI_SEQ_ID column is automatically
incremented when data is inserted into the outbound table.

The Downloader-Transporter job downloads a single data set that is not downloaded
yet from the outbound interface tables.

If a data set id is passed as job parameter (for example jobParameters=dataSetId=1) to
Downloader-Transporter job, it will use that data set if it is available for download. Job
Parameters as a query parameter. Job Parameters is a comma separated list of name
value pairs. This parameter is optional.

If there are multiple data sets in the outbound tables that are available for download,
then the Downloader-Transporter job picks up the oldest data set.

If there is no data set available in the outbound tables, the Downloader-Transporter job
completes without downloading any data.

If a newer data set is processed by the Downloader-Transporter job, then older data set
cannot be processed.

A data set is divided into Logical Partitions and data in each partition is downloaded
by a separate thread. The Downloader-Transporter job tries to allocate data equally
between partitions. Data in each partition is divided into blocks based on the
“item-count” value in the job and each block is retrieved from an outbound table and
streams it to the destination application using the Receiver Service.

A data set is divided into logical partitions based on the number of partitions specified
in the BDI_DWNLDR_TRNSMITTR_OPTIONS table and the number of rows in the
data set.

The number of rows is calculated by subtracting the begin sequence number from the
end sequence number provided in the BDI_DWNLDR_IFACE_DATA_CTL table. The
number of rows may be approximate as there can be gaps in sequence numbers.

The number of rows allocated to each logical partition is calculated by dividing the
approximate row count with the number of partitions.

Example 1:
Begin Sequence number = 1
End Sequence number = 100
Number of partitions = 2

Approximate row count = 100 - 1 + 1
Items for partition = 100/2 = 50
Data assigned to partition 1
Begin Sequence number = 1
End Sequence number = 1 + 50 - 1 = 50

Data assigned to partition 2
Begin Sequence number = 51
End Sequence number = 51 + 50 - 1 = 100

Example 2:
Begin Sequence number = 1
End Sequence number = 75
Number of partitions = 2

Approximate row count = 75 - 1 + 1
Items for partition = 75/2 = 37
Extra items = 75 % 2 = 1
Data assigned to partition 1

Job Admin Core Components

Job Administrator 2-5

Begin Sequence number = 1
End Sequence number = 1 + 37 - 1 = 37

Data assigned to partition 2
Begin Sequence number = 38
End Sequence number = 38 + 37 + 1 - 1 = 75

The Downloader-Transporter job deletes data from outbound tables after the
successful completion of the job if AUTO_PURGE_DATA flag in BDI_DWNLDR_
TRNSMITTR_OPTIONS table is set to TRUE. The default value for this flag is TRUE. If
sender side split topology is used, this flag needs to be changed to FALSE. Otherwise
all destination applications may not get the data.

When a Downloader-Transporter job fails, the error information such as stack trace
gets stored in BDI_JOB_ERROR and BDI_DOWNLOADER_JOB_ERROR tables. Errors
are displayed in the “Diagnostics” tab of the Job Admin GUI. The error information
can be used to fix the issues before restarting the failed job. Note that if there are
exceptions in Batch runtime, then those exceptions won't show up in the Job Error
tables and so in the Diagnostics tab of the Job Admin GUI.

Downloader-Transporter Job Configuration

Seed data for the Downloader-Transporter jobs is loaded to the database during the
deployment of Job Admin. Some of the seed data can be changed from the Job Admin
GUI.

BDI_SYSTEM_OPTIONS

During the installation of Job Admin, the following information is provided by the
user and that information is loaded into the BDI_SYSTEM_OPTIONS table.

<app>JobAdminBaseUrl - Base URL for Job Admin of destination applications such as
sim/rxm

<app>JobAdminBaseUrlUserAlias - User alias for Job Admin of destination
applications such as sim/rxm

<app> - Destination application name (for example sim or rxm)

Example:
MERGE INTO BDI_SYSTEM_OPTIONS USING DUAL ON (VARIABLE_NAME='rxmJobAdminBaseUrl'
and APP_TAG='bdi-rms-batch-job-admin.war') WHEN MATCHED THEN UPDATE SET VARIABLE_
VALUE='http://rxmhost:7001/bdi-rxm-batch-job-admin', UPDATE_TIME=SYSDATE WHEN NOT
MATCHED THEN INSERT (VARIABLE_NAME, APP_TAG, VARIABLE_VALUE, CREATE_TIME)
VALUES('rxmJobAdminBaseUrl', 'bdi-rms-batch-job-admin.war',
'http://rxmhost:7001/bdi-rxm-batch-job-admin', SYSDATE)

BDI_INTERFACE_CONTROL

During the design time, seed data for the BDI_INTERFACE_CONTROL table is
generated for all interface modules (aka families) for a job type (DOWNLOADER,
UPLOADER) so that interface modules are active.

Table 2–1 System Options

Column Type Comments

VARIABLE_NAME VARCHAR2(255) Name of the system
variable

APP_TAG VARCHAR2(255) The application name

VARIABLE_VALUE VARCHAR2(255) Value of the variable

Job Admin Core Components

2-6 Oracle Retail Bulk Data Integration Implementation Guide

Example:
insert into BDI_INTERFACE_CONTROL (ID, INTERFACE_CONTROL_COMMAND, INTERFACE_
MODULE, SYSTEM_COMPONENT_TYPE) values (1, 'ACTIVE', 'Diff_Fnd', 'DOWNLOADER')

BDI_DWNLDR_TRNSMITTR_OPTIONS

Seed data for BDI_DWNLDR_TRNSMITTR_OPTIONS specifies various configuration
options for the Downloader-Transmitter job. Seed data is generated during design time
and executed during deployment.

Table 2–2 Interface Control

Column Type Comments

ID NUMBER Primary Key

INTERFACE_CONTROL_
COMMAND

VARCHAR2(255) ACTIVE or IN_ACTIVE

INTERFACE_MODULE VARCHAR2(255) Name of interface module

SYSTEM_COMPONENT_
TYPE

VARCHAR2(255) DOWNLOADER or
UPLOADER

Table 2–3 Transmitter Options

Column Type Comments

ID NUMBER Primary Key

INTERFACE_MODULE VARCHAR2(255) Name of interface module

INTERFACE_SHORT_
NAME

VARCHAR2(255) Name of the interface

RECVR_END_POINT_URL VARCHAR2(255) Name of the URL variable in
BDI_SYSTEM_OPTIONS table

RECVR_END_POINT_
URL_ALIAS

VARCHAR2(255) Name of the URL alias variable
in BDI_SYSTEM_OPTIONS
table

PARTITION. NUMBER Number of partitions used by
Downloader-Transporter job.
Default value is 10. This value
can be changed through Job
Admin GUI

Job Admin Core Components

Job Administrator 2-7

Example:

MERGE INTO BDI_DWNLDR_TRNSMITTR_OPTIONS USING DUAL ON (ID=1) WHEN MATCHED THEN
UPDATE SET INTERFACE_MODULE='Diff_Fnd', INTERFACE_SHORT_NAME='Diff', RECVR_END_
POINT_URL='rxmJobAdminBaseUrl', RECVR_END_POINT_URL_
ALIAS='rxmJobAdminBaseUrlUserAlias', PARTITION=10, THREAD=10, QUERY_
TEMPLATE='select * from InterfaceShortName where (bdi_seq_id between ? and ?)
QueryFilter order by bdi_seq_id', AUTO_PURGE_DATA='TRUE' WHEN NOT MATCHED THEN
INSERT (ID, INTERFACE_MODULE, INTERFACE_SHORT_NAME, RECVR_END_POINT_URL, RECVR_
END_POINT_URL_ALIAS, PARTITION, THREAD, QUERY_TEMPLATE, AUTO_PURGE_DATA) values
(1, 'Diff_Fnd', 'Diff', 'rxmJobAdminBaseUrl', 'rxmJobAdminBaseUrlUserAlias', 10,
10, 'select * from InterfaceShortName where (bdi_seq_id between ? and ?)
QueryFilter order by bdi_seq_id', 'TRUE')

MERGE INTO BDI_DWNLDR_TRNSMITTR_OPTIONS USING DUAL ON (ID=1) WHEN MATCHED THEN
UPDATE SET INTERFACE_MODULE='Diff_Fnd', INTERFACE_SHORT_NAME='Diff', RECVR_END_
POINT_URL='rxmJobAdminBaseUrl', RECVR_END_POINT_URL_
ALIAS='rxmJobAdminBaseUrlUserAlias', PARTITION=10, THREAD=10, QUERY_
TEMPLATE='select * from InterfaceShortName where (bdi_seq_id between ? and ?)
QueryFilter order by bdi_seq_id', AUTO_PURGE_DATA='TRUE' WHEN NOT MATCHED THEN
INSERT (ID, INTERFACE_MODULE, INTERFACE_SHORT_NAME, RECVR_END_POINT_URL, RECVR_
END_POINT_URL_ALIAS, PARTITION, THREAD, QUERY_TEMPLATE, AUTO_PURGE_DATA) values
(2, 'Diff_Fnd', 'Diff', 'rxmJobAdminBaseUrl', 'rxmJobAdminBaseUrlUserAlias', 10,
10, 'select * from InterfaceShortName where (bdi_seq_id between ? and ?)
QueryFilter order by bdi_seq_id', 'TRUE')

Downloader-Transporter Job Properties

The following job properties can be changed in the Downloader-Transporter jobs to
tune the performance.

item-count

THREAD NUMBER Number of threads used by
Downloader-Transporter job.
Default value is 10. This value
can be changed through Job
Admin GUI.

QUERY_TEMPLATE VARCHAR2(255) Query to be run by downloader
job

AUTO_PURGE_DATA VARCHAR2(255) This flag indicates
Downloader-Transporter job
whether to clean data set in the
outbound table after the job
successfully downloads the data
set. Default value is set to True.
This value need to be changed
based on the deployment
topology used for bulk data
integration.

Table 2–3 (Cont.) Transmitter Options

Column Type Comments

Job Admin Core Components

2-8 Oracle Retail Bulk Data Integration Implementation Guide

Item Count is an attribute of the “chunk” element in the Downloader-Transporter job.
The default value for “item-count” is set to 1000. The Downloader job retrieves 1000
rows of data from the database before it sends data to the Receiver Service.

<chunk checkpoint-policy="item" item-count="1000">

This value can be changed to fine tune the performance of the
Downloader-Transporter job. You need to manually change the value in the job xml
files in bdi-<app>-home/setup-data/job/META-INF/batch-jobs folder and reinstall
the app. Increasing the item count will increase memory utilization.

fetchSize

The Fetch Size is a property in the Downloader-Transporter job.

FetchSize property is used by JDBC to fetch n number of rows and cache them. The
default value is set to 1000. Typically “item-count” and “fetchSize” values are identical
to get better performance.

<property name="fetchSize" value="1000"/>

This value can be changed to fine tune the performance of the
Downloader-Transporter job. You need to manually change the value in the job xml
files.

Cleanup

The Downloader-Transporter job deletes data from outbound tables after the
successful completion of the job if the AUTO_PURGE_DATA flag in BDI_DWNLDR_
TRNSMITTR_OPTIONS table is set to TRUE. The default value for this flag is TRUE. If
sender side split topology is used, this flag needs to be changed to FALSE. Otherwise
all destination applications may not get the data.

Error Handling

When a Downloader-Transporter job fails, error information like the stack trace gets
stored in the BDI_JOB_ERROR and BDI_DOWNLOADER_JOB_ERROR tables. Errors
are displayed in the “Diagnostics” tab of the Job Admin GUI. The error information
can be used to fix the issues before restarting the failed job.

BDI_DOWNLOADER_JOB_ERROR

Note: If there are exceptions in Batch runtime, then those exceptions
won't show up in Job Error tables and so in Diagnostics tab of Job
Admin GUI.

Table 2–4 Downloader Job Error

Column Type Comments

DOWNLOADER_JOB_
ERROR_ID

NUMBER Primary key

PARTITION_INDEX VARCHAR2(255) Partition number of data set

BLOCK_NUMBER NUMBER Block number in the partition

Job Admin Core Components

Job Administrator 2-9

BDI_JOB_ERROR

Receiver Service
The Receiver Service is a RESTful service that provides various endpoints to send data
transactionally.

The Receiver Service is part of Job Admin. It stores data as files and keeps track of
metadata in the database. The Receiver Service also supports various merge strategies
for merging files at the end.

The Receiver Service is used by the Downloader-Transporter job to transmit data from
source to destination.

Uploader Job
An Uploader Job uploads data from CSV files into Inbound Tables for an Interface
Module. It divides files into logical partitions and each partition is processed
concurrently. If a data set is already present in inbound tables, and the Uploader Job
tries to upload the same data set, then it will overwrite the existing data set.

BEGIN_SEQ_NUM_IN_
BLOCK

NUMBER Begin sequence number in the
block

END_SEQ_NUM_IN_
BLOCK

NUMBER End sequence number in the
block

JOB_ERROR_ID NUMBER Foreign key to JOB_ERROR
table

Table 2–5 Job Error

Column Type Comments

JOB_ERROR_ID NUMBER Primary key

CREATE_TIME TIMESTAMP Time when error occurred

TRANSACTION_ID VARCHAR2(255) Transaction Id of the job

INTERFACE_MODULE VARCHAR2(255) Name of the interface module

INTERFACE_SHORT_
NAME

VARCHAR2(255) Name of the interface

DESCRIPTION VARCHAR2(1000) Error description

STACK_TRACE VARCHAR2(4000) Stack trace

Table 2–4 (Cont.) Downloader Job Error

Column Type Comments

Job Admin Core Components

2-10 Oracle Retail Bulk Data Integration Implementation Guide

BDI Uploader

1. The Uploader job is run from the BDI App B Job Admin application through REST
or UI.

2. The Uploader job checks for data sets in the uploader data control table.

3. If the data set is available for upload, the uploader job finds the location of the files
from Receiver Service database.

4. The Uploader job retrieves a block of data from the file(s).

5. The Uploader job inserts/updates data in inbound tables.

6. The Uploader job inserts entries in importer data control tables to indicate that a
data set is ready for import.

7. Steps 4, 5, and 6 are repeated until there is no more data to upload.

Rules for processing a data set by an Uploader Job

1. A data set is available for upload, if it is not processed by an uploader job yet and
if a newer data set is not processed successfully.

2. If the data set id is passed through job parameters (for example
jobParameters=dataSetId=1) to the uploader job, it will use the data set if it is
available as per the above rule. Otherwise job will fail.

3. If the data set id is not passed through job parameters to the uploader job, it will
identify the next available data set if there is one. Otherwise the job completes
without processing any data set.

4. If an uploader job fails for whatever reason, the data set that it tried to upload can
only be uploaded by restarting the job after fixing the issue. If uploader job is
started instead of a restart, it will either pick up a new data set or none.

Uploader Data Set

A Data Set consists of files created by the Receiver Service.

Job Admin Core Components

Job Administrator 2-11

■ The Uploader job uploads a single data set that is not uploaded to inbound tables
yet. It uses BDI_UPLDER_IFACE_MOD_DATA_CTL and Receiver Service tables
to identify the data set to be uploaded.

■ If source data set id is passed through the job parameters, then the Uploader job
uses that data set if it is available for upload.

■ If there are multiple data sets available, then the Uploader job picks up the oldest
data set available for upload.

■ If a newer data set is processed by the Uploader job, then the older data set cannot
be processed.

■ If there is no data set available, the Uploader job completes without uploading any
data.

The Uploader job tries to allocate files equally between different partitions. Data is
read from files in each partition based on the “item-count” value in the job and data is
uploaded to inbound tables. The job continues to read data from files in a partition
until there is no more data to be read.

A data set is divided into logical partitions based on the number of partitions specified
in the BDI_UPLOADER_OPTIONS table and number of files in the data set. The
number of files allocated to each logical partition is calculated by dividing file count
with number of partitions.

Example 1:
Number of files = 100
Number of partitions = 2

Files for partition = 100/2 = 50
Files assigned to partition 1
Begin File index = 0
End File index = 49

Data assigned to partition 2
Begin File Index = 50
End File Index = 99

Example 2:
Number of files = 75
Number of partitions = 2

Files for partition = 75/2 = 37
Extra files = 75 % 2 = 1
Files assigned to partition 1
Begin File index = 0
End File index = 36

Files assigned to partition 2
Begin File index = 37
End File index = 37 +37 = 74

Uploader Cleanup Jobs

The Cleanup job cleans data set(s) for an interface module from outbound tables or
receiver files. Cleanup jobs are generated during design time. They are included in the
sender side or receiver side split flows.

There are two types of cleanup jobs - extractor and receiver cleanup jobs.

The Extractor cleanup job deletes data set(s) from outbound tables. It identifies data
sets that have been successfully downloaded and transmitted to destination
applications and deletes the identified data sets from outbound tables.

Job Admin Core Components

2-12 Oracle Retail Bulk Data Integration Implementation Guide

The Receiver cleanup job deletes CSV files from the receiver file system. It identifies
the files that have been successfully uploaded to inbound tables and deletes the files
from the file system.

Uploader Job Configuration
BDI_INTERFACE_CONTROL

During the design time, seed data for the BDI_INTERFACE_CONTROL table is
generated for all interface modules (aka families) for a job type of UPLOADER so that
interface modules are active. DML runs during deployment.

Example:

MERGE INTO BDI_INTERFACE_CONTROL USING DUAL ON (ID=1) WHEN
MATCHED THEN UPDATE SET INTERFACE_CONTROL_COMMAND='ACTIVE',
INTERFACE_MODULE='Diff_Fnd', SYSTEM_COMPONENT_TYPE='UPLOADER'
WHEN NOT MATCHED THEN INSERT (ID, INTERFACE_CONTROL_COMMAND,
INTERFACE_MODULE, SYSTEM_COMPONENT_TYPE) VALUES(1, 'ACTIVE', 'Diff_
Fnd', 'UPLOADER')

BDI_UPLOADER_OPTIONS

Seed data for BDI_UPLOADER_OPTIONS specifies various configuration options for
uploader job. Seed data is generated during design time and executed during
deployment.

Table 2–6 Uploader Options

Column Type Comments

ID NUMBER Primary Key

INTERFACE_MODULE VARCHAR2(255) Name of interface module

INTERFACE_SHORT_
NAME

VARCHAR2(255) Name of the interface

PARTITION NUMBER Number of partitions used by
Uploader job. Default value is
10. This value can be changed
through Job Admin GUI.

THREAD NUMBER Number of threads used by
Uploader job. Default value is
10. This value can be changed
through Job Admin GUI.

MERGE_STRATEGY VARCHAR2(255) Merge strategy used by Receiver
Service - NO_MERGE, MERGE_
TO_PARTITION_LEVEL,
MERGE_TO_INTERFACE_
LEVEL

Job Admin Core Components

Job Administrator 2-13

Example:
MERGE INTO BDI_UPLOADER_OPTIONS USING DUAL ON (ID=1) WHEN MATCHED THEN UPDATE SET
INTERFACE_MODULE='Diff_Fnd', INTERFACE_SHORT_NAME='Diff', MERGE_STRATEGY='NO_
MERGE', PARTITION=10, THREAD=10, AUTO_PURGE_DATA='TRUE' WHEN NOT MATCHED THEN
INSERT (ID, INTERFACE_MODULE, INTERFACE_SHORT_NAME, MERGE_STRATEGY, PARTITION,
THREAD, AUTO_PURGE_DATA) values (1, 'Diff_Fnd', 'Diff', 'NO_MERGE', 10, 10,
'TRUE')
Uploader Job Properties

The following job property can be changed in uploader jobs to tune the performance.

item-count

Item Count is an attribute of “chunk” element in the Uploader job. The default value
for “item-count” is set to 1000. Uploader job reads 1000 rows from the file(s) before it
inserts/updates that data in the inbound tables.

<chunk checkpoint-policy="item" item-count="1000">

This value can be changed to fine tune the performance of an Uploader job. You need
to manually change the value in the the job xml files in the
bdi-<app>-home/setup-data/job/META-INF/batch-jobs folder and reinstall the app
for changes to take place.

Cleanup

The Uploader job deletes CSV files from the receiver file system after the successful
completion of the job if the AUTO_PURGE_DATA flag in BDI_UPLOADER_OPTIONS
table is set to TRUE. The default value for this flag is TRUE. If receiver side split
topology is used, this flag needs to be changed to FALSE. Otherwise all destination
applications may not get the data in inbound tables.

Error Handling

When Uploader job fails, error information like stack trace gets stored in BDI_
UPLOADER_JOB_ERROR table. Errors are displayed in the “Diagnostics” tab of Job
Admin GUI. The error information can be used to fix the issues before restarting the
failed job.

BDI_UPLOADER_JOB_ERROR

AUTO_PURGE_DATA VARCHAR2(255) This flag indicates Uploader job
whether to clean the files after
uploader job successfully
uploads the data to inbound
tables. Default value is True.
This value needs to be changed
based on the deployment
topology used for bulk data
integration.

Note: If there are exceptions in Batch runtime, then those exceptions
won't show up in Job Error tables and so in Diagnostics tab of Job
Admin GUI.

Table 2–6 (Cont.) Uploader Options

Column Type Comments

Job Admin Core Components

2-14 Oracle Retail Bulk Data Integration Implementation Guide

Importer Job
The tables BDI_IMPRTR_IFACE_MOD_DATA_CTL and BDI_IMPORTER_IFACE_
DATA_CTL act as a handshake between the uploader and importer jobs. When the
Uploader Job completes processing a data set successfully, it creates an entry in these
tables.

An entry in the table BDI_IMPRTR_IFACE_MOD_DATA_CTL indicates to the
Importer Job that a data set is ready to be imported.

The Importer job imports a data set for an Interface Module from inbound tables into
application specific transactional tables. Importer jobs are application (for example
SIM/RXM) specific jobs. It uses the Importer Data Control Tables to identify whether a
data set is ready for import or not.

RXM Importer

Table 2–7 Uploader Job Error

Column Type Comments

UPLOADER_JOB_ERROR_
ID

NUMBER Primary key

FILE_NAME VARCHAR2(255) File in which error occurred

BEGIN_ROW_NUMBER NUMBER Beginning row number in the
file

END_ROW_NUMBER NUMBER Ending row number in the file

JOB_ERROR_ID NUMBER Foreign key to JOB_ERROR
table

Job Admin Core Components

Job Administrator 2-15

1. Importer job is run from App B Job Admin application through REST or UI.

2. Importer job checks for data sets in importer data control tables.

3. If data set is available for import, importer job downloads data from inbound
table.

4. Importer job loads data to App B staging tables.

BDI_IMPRTR_IFACE_MOD_DATA_CTL

BDI_IMPORTER_IFACE_DATA_CTL

Table 2–8 Importer Data

Column Type Comments

IMPORTER_IFACE_MOD_
DATACTL_ID

NUMBER Primary key

INTERFACE_MODULE VARCHAR2(255) Name of the interface module

SOURCE_SYSTEM_NAME NUMBER Name of the source system

SOURCE_DATA_SET_ID NUMBER Source data set id

SRC_SYS_DATA_SET_
READY_TIME

TIMESTAMP Time when data set was ready in
outbound tables

DATA_SET_TYPE VARCHAR2(255) Type of data set (FULL or
PARTIAL)

DATA_SET_READY_TIME TIMESTAMP Time when data set was
available in inbound tables

UPLOADER_
TRANSACTION_ID

NUMBER Transaction id of the uploader
job

Table 2–9 Importer Data

Column Type Comments

IMPORTER_IFACE_DATA_
CTL_ID

NUMBER Primary key

INTERFACE_SHORT_
NAME

VARCHAR2(255) Name of the interface

INTERFACE_DATA_
BEGIN_SEQ_NUM

NUMBER Beginning sequence number of
the data set in the inbound table

Job Admin Core Components

2-16 Oracle Retail Bulk Data Integration Implementation Guide

INTERFACE_DATA_END_
SEQ_NUM

NUMBER Ending sequence number of the
data set in the inbound table

JIMPORTER_IFACE_MOD_
DATACTL_ID

NUMBER Foreign key to BDI_IMPRTR_
IFACE_MOD_DATA_CTL table

Table 2–9 (Cont.) Importer Data

Column Type Comments

3

Job Admin Services 3-1

3Job Admin Services

This chapter discusses the Job Admin Services.

Job Admin RESTful Services
Job Admin provides below RESTful services. These services are secured with SSL and
basic authentication.

■ Batch Service - Ability to start/stop/restart, check status, and so on of jobs. This
service is typically used by the BDI Process Flow engine.

■ Receiver Service - Ability to stream data from one system to another system. This
service is used by the Downloader-Transporter job.

■ System Setting Service - Ability to view, change system settings, and credentials.
Refer to Appendix D for details on System Setting REST resources.

■ Data Service - Ability to get data set information using job information such as job
name, execution id or instance id.

Receiver Service
The Receiver Service is a RESTful service that provides various endpoints to send data
transactionally. Receiver Service is part of Job Admin. It stores data as files and keeps
track of metadata in the database. The Receiver Service also supports various merge
strategies for merging files at the end. The Receiver Service is used by the
Downloader-Transporter job to transmit data from source to destination.

Seed data for Receiver Service is generated during design time and loaded during
deployment of the Job Admin application.

BDI_RECEIVER_OPTIONS

The Receiver Service options can be configured at interface level.

Table 3–1 Receiver Options

Column Type Comments

ID NUMBER Primary key

INTERFACE_MODULE VARCHAR2(255) Name of the interface module

INTERFACE_SHORT_
NAME

VARCHAR2(255) Name of the interface

Job Admin RESTful Services

3-2 Oracle Retail Bulk Data Integration Implementation Guide

Endpoints

Ping

This endpoint can be used to check whether the Receiver Service is up or not.

HTTP Method: GET

Path: receiver/ping

BASE_FOLDER VARCHAR2(255) This is the base folder for storing
files created by Receiver Service.
Receiver Service creates a
subfolder “bdi-data” under base
folder. Base folder can be
changed from “Manage
Configurations” tab of Job
Admin GUI.

FOLDER_TEMPLATE VARCHAR2(255) Folder template provides the
folder structure for storing files
created by Receiver
Service.Default value is
“${basefolder}/${TxId}/${TId}/$
{BId}/”.

TxId - Transaction Id

TId - Transmission Id

BId - Block Id

This value can’t be changed.

MERGE_STRATEGY VARCHAR2(255) The strategy for merging files.
The default value is “NO_
MERGE”. The valid values are
NO_MERGE, MERGE_TO_
PARTITION_LEVEL, and
MERGE_TO_INTERFACE_
LEVEL.

MERGE_TO_PARTITION_
LEVEL

Merges all files for that partition
and creates the merged file in
“${TId}” folder.

MERGE_TO_INTERFACE_
LEVEL

Merges all files for interface and
creates the merged file in
“${TxId}” folder.

MERGE strategies are only
supported in cases where the
Uploader is not used.

Table 3–1 (Cont.) Receiver Options

Column Type Comments

Job Admin RESTful Services

Job Admin Services 3-3

Response: alive

Begin Receiver Transaction

This is the first endpoint to be called by the client (for example
Downloader-Transporter job) before sending any data. It stores the following metadata
in the BDI_RECEIVER_TRANSACTION table and returns the response in JSON
format.

HTTP Method: POST

Path:
receiver/beginTransaction/{transactionId}/{interfaceModule}/{sourceSystemName}/{
sourceSystemId}/{sourceDataSetId}/{dataSetType}/{sourceSystemDataSetReadyTime}

Sample Response

{
“receiverTransactionId”: “1”,
“transactionId”: “Tx#1”,
“sourceSystemName”: “RMS”,
“interfaceModule”: “Diff_Fnd”,
“sourceSystemId”: “”,
“sourceDataSetId”: “”,
“dataSetType”: “FULL”,
“sourceSystemDataSetReadyTime”: “”,
“dir”: “”,
“fileName”: “”,
“receiverTransactionStatus”: “”,
“receiverTransactionBeginTime”: “”,
“receiverTransactionEndTime”: “”
}

Begin Receiver Transmission

This end point needs to be called by client (for example Downloader-Transporter job)
before sending any data for a partition. It stores the following metadata in BDI_
RECEIVER_TRANSMISSION table and returns response in JSON format.

Parameter Description

Transaction Id Transaction Id (Tx#<Job Instance Id> of the
Downloader-Transporter job

Interface Module Name of the interface module (for example Diff_Fnd)

Source System Name Name of the source system (for example RMS)

sourceSystemId ID of the source system (for example URL)

sourceDataSetId ID of the data set

Data Set Type Type of data set (FULL or PARTIAL)

Source System Data Set Ready
Time

Time when source data set was ready in the outbound
tables

Parameter Description

TransmissionId Generated for each partition

InterfaceModule) Name of the interface module (for example Diff_Fnd

InterfaceShortName) Name of the interface (for example Diff

Job Admin RESTful Services

3-4 Oracle Retail Bulk Data Integration Implementation Guide

HTTP Method: POST

Path:
receiver/beginTransmission/{transactionId}/{transmissionId}/{sourceSystemName}/
{interfaceMod-ule}/{interfaceShortName}/{partitionName}/{partitionBeginSeqNum}
/{partitionEndSeqNum}/{beginBlockNumber}

Sample Response:

{
“transmissionId”: “1”,
“interfaceModule”: “Diff_Fnd”,
“interfaceShortName”: “Diff”,
“sourceSystemPartitionName”: “1”,
“sourceSystemPartitionBeginSequenceNumber”: “1”,
“sourceSystemPartitionEndSequenceNumber”: “100”,
“beginBlockNumber”: “1”,
“endBlockNumber”: “”,
“dir”: “”,
“fileName”: “”,
“receiverTransmissionStatus”: “”
}

Update Data Block

Clients use this endpoint to send data. This endpoint is typically called by the client
multiple times until there is no more data. It creates a csv file with the data it received
at the below location.

${BASE_FOLDER}/bdi-data/${TxId}/${TId}/${BId}

BASE_FOLDER - Obtained from the BDI_RECEIVER_OPTIONS table

TxId - Transaction Id of the remote Downloader-Transporter job

TId - Transmission Id associated with the transaction id

BId - Block Id associated with transmission id

It also stores the following metadata in the RECEIVER_TRANSMISSION_BLOCK
table.

partitionName Partition number

partitionBeginSeqNum Begin sequence number in the partition

partitionEndSeqNum End sequence number in the partition

beginBlockNumber Begin block number

Parameter Description

BlockNumber Number of the block

ItemCountInBlock Number of items in the block

Dir Directory where file is created

FileName Name of the file

ReceiverBlockStatus Status of the block

CreateTime Time when the block is created

Parameter Description

Job Admin RESTful Services

Job Admin Services 3-5

HTTP Method: POST

Path:
receiver/uploadDataBlock/{transactionId}/{transmissionId}/{sourceSystemName}/{i
nterfaceModule}/{interfaceShortName}/{blockNumber}/{itemCountInBlock}

Sample Response

{
“blockId”: “1”,
“transmissionId”: “1”,
“blockNumber”: “1”,
“blockItemCount”: “100”,
“dir”: “”,
“fileName”: “”,
“receiverBlockStatus”: “”,
“createTime”: “”
}

End Transmission

This end point ends transmission for a partition. It updates “endBlockNumber” and
“receiverTransmisionStatus” in the RECEIVER_TRANSMISSION table.

HTTP Method: POST

Path:
receiver/endTransmission/{transmissionId}/{sourceSystemName}/{interfaceModule}
/{interfaceShortName}/{numBlocks}

Sample Response

{
“transmissionId”: “1”,
“interfaceModule”: “Diff_Fnd”,
“interfaceShortName”: “Diff”,
“sourceSystemPartitionName”: “1”,
“sourceSystemPartitionBeginSequenceNumber”: “1”,
“sourceSystemPartitionEndSequenceNumber”: “100”,
“beginBlockNumber”: “1”,
“endBlockNumber”: “”,
“dir”: “”,
“fileName”: “”,
“receiverTransmissionStatus”: “”
}

End Transaction

This end point ends the transaction and called once by the client. It updates
“receiverTransactionStatus” and “receiverTranasctionEndTime” in the RECEIVER_
TRANSACTION table. If “mergeStrategy” is set to “MERGE_TO_PARTITION_
LEVEL” or “MERGE_TO_INTERFACE_LEVEL”, then it merges the files and creates
the merged file(s) at the appropriate directory. It creates an entry in the BDI_UPLDER_
IFACE_MOD_DATA_CTL table so that Uploader job can pick up the data.

HTTP Method: POST

Path:
receiver/endTransaction/{transactionId}/{sourceSystemName}/{interfaceModule}

Sample Response

{

Job Admin RESTful Services

3-6 Oracle Retail Bulk Data Integration Implementation Guide

“receiverTransactionId”: “1”,
“transactionId”: “Tx#1”,
“sourceSystemName”: “RMS”,
“interfaceModule”: “Diff_Fnd”,
“sourceSystemId”: “”,
“dataSetType”: “FULL”,
“sourceSystemDataSetReadyTime”: “”,
“dir”: “”,
“fileName”: “”,
“receiverTransactionStatus”: “”,
“receiverTransactionBeginTime”: “”,
“receiverTransactionEndTime”: “”
}

Uploader Interface Module Data Control Table

The BDI_UPLDER_IFACE_MOD_DATA_CTL table acts as a handshake between the
downloader and uploader jobs. When the downloader-transporter job calls
endTransaction on Receiver Service, the Receiver Service creates an entry in this table
if it successfully received data and created files.

An entry in this table indicates to the uploader job that a data set is ready to be
uploaded.

BDI_UPLDER_IFACE_MOD_DATA_CTL

Receiver Side Split for Multiple Destinations

If there are multiple destinations that receive data from a source, one of the options is
to use the Receiver Service at one destination to receive data from the sender and then
multiple destinations use the data from one Receiver Service to upload to inbound
tables. The requirements for the Receiver Side Split are such that:

■ The Receiver Service database schema is shared by all the destinations

Table 3–2 Module Data Control

Column Type Comments

UPLOADER_IFACE_MOD_
DATA_CTLID

NUMBER Primary key

INTERFACE_MODULE VARCHAR2(255) Name of the interface module

REMOTE_
TRANSACTION_ID

VARCHAR2(255) Transaction Id of
Downloader-Transporter job

SOURCE_DATA_SET_ID NUMBER NUMBERID of the source data
set

SRC_SYS_DATA_SET_
READY_TIME

TIMESTAMP Source Data Set Ready Time

DATA_SET_TYPE VARCHAR2(255) Type of data set (FULL or
PARTIAL)

DATA_SET_READY_TIME TIMESTAMP Time when data set was
available in the outbound tables

DATA_FILE_MERGE_
LEVEL

VARCHAR2(255) Merge level for the files (NO_
MERGE, MERGE_TO_
PARTITION_LEVEL, MERGE_
TO_INTERFACE_LEVEL)

SOURCE_SYSTEM_NAME VARCHAR2(255) Name of the source system (for
example RMS)

Job Admin RESTful Services

Job Admin Services 3-7

■ The File system is shared by all destinations

The performance of BDI can be improved by using the receiver side split if there are
multiple destinations.

Batch Service
Batch service is a RESTful service that provides various endpoints to manage batch
jobs in the bulk data integration system. Batch Service is part of Job Admin.

Key End Points

Start Job

This end point starts a job asynchronously based on a job name and returns the
execution id of the job in the response.

Path: /batch/jobs/{jobName}

HTTP Method: POST

Inputs

Job Name as path parameter

Table 3–3 Batch Service

REST Resource HTTP Method Description

/batch/jobs GET Gets all available batch jobs

/batch/jobs/{jobName} GET Gets all instances for a job

/batch/jobs/{jobName}/ex
ecutions

GET Gets all executions for a job

/batch/jobs/executions GET Gets all executions

/batch/jobs/currently-runn
ing-jobs

GET Gets currently running jobs

/batch/jobs/{jobName}/{jo
bInstanceId}/executions

GET Gets job executions for a job
instance

/batch/jobs/{jobName}/{jo
bExecutionId}

GET Gets job instance and execution
for a job execution id

/batch/jobs/{jobName} POST Starts a job asynchronously

/batch/jobs/executions/{jo
bExecutionId}

POST Restarts a stopped or failed job

/batch/jobs/executions DELETE Stops all running job executions

/batch/jobs/executions/{jo
bExecutionId}

DELETE Stops a job execution

/batch/jobs/executions/{jo
bExecutionId}

GET Gets execution steps with details

/batch/jobs/executions/{jo
bExecutionId}/steps

GET Gets execution steps

/batch/jobs/executions/{jo
bExecutionId}/steps/{stepE
xecutionId}

GET Gets step details

/batch/jobs/job-def-xml-fil
es

GET Gets all job xml files

Job Admin RESTful Services

3-8 Oracle Retail Bulk Data Integration Implementation Guide

Job Parameters as a query parameter. Job Parameters is a comma separated list of
name value pairs. This parameter is optional.

Sample Request

http://localhost:7001/bdi-batch-job-admin/resources/batch/jobs/DiffGrp_Fnd_
ImporterJob?jobParameters=dataSetId=1

Successful Response

XML

<executionIdVo targetNamespace=””>
<executionId>1</executionId>
<jobName>DiffGrp_Fnd_ImporterJob</jobName>
</executionIdVo>

JSON

{
“executionId”: 1,
“jobName”: “DiffGrp_Fnd_ImporterJob”
}

Error Response

XML
<exceptionVo targetNamespace=””>
<statusCode>404</statusCode>
<status>NOT_FOUND</status>
<message>HTTP 404 Not Found</message>
<stackTrace></stackTrace> <!-- optional -->
</exceptionVo>

JSON
{
“statusCode”: “404”,
“status”: “NOT_FOUND”,
“message”: “HTTP 404 Not Found”,
“stackTrace”: “”
}

Restart Job

This end point restarts a job asynchronously using the job execution id and returns the
new job execution id.

Path: /batch/jobs/executions/{executionId}

HTTP Method: POST

Inputs

executionId as path parameter

Sample Request

http://localhost:7001/bdi-batch-job-admin/resources/batch/jobs/executions/2

Successful Response

XML

<executionIdVo targetNamespace=””>
<executionId>2</executionId>

Job Admin RESTful Services

Job Admin Services 3-9

<jobName>DiffGrp_Fnd_ImporterJob</jobName>
</executionIdVo>

JSON

{
“executionId”: 2,
“jobName”: “DiffGrp_Fnd_ImporterJob”
}

Error Response

XML
XML

<exceptionVo targetNamespace=””>
<statusCode>500</statusCode>
<status>INTERNAL_SERVER_ERROR</status>
<message>Internal Server Error</message>
<stackTrace></stackTrace> <!-- optional -->
</exceptionVo>

JSON

{
“statusCode”: “500”,
“Status”: “INTERNAL_SERVER_ERROR”,
“Message”: “Internal Server Error”,
“stackTrace”: “”
}

Check Status of a Job

This endpoint returns the status of a job using the job name and execution id.

Path: /batch/jobs/jobName/{jobExecutionId}

HTTP Method: GET

Inputs

jobName as path parameter

jobExecutionId as path parameter

Sample Request

http://localhost:7001/bdi-batch-job-admin/resources/batch/jobs/DiffGrp_Fnd_
ImporterJob/1

Successful Response

XML
<jobInstanceExecutionsVo targetNamespace=””>

<jobName>DiffGrp_Fnd_ImporterJob</jobName>
<jobInstanceId>1</jobInstanceId>

<resource>http://localhost:7001/bdi-batch-job-admin/resources/batch/jobs/DiffGrp_
Fnd_ImporterJob/1</resource>

<jobInstanceExecutionVo>
<executionId>1<>executionId>
<executionStatus>COMPLETED</executionStatus>
<executionStartTime>2016-07-11 15:45:27.356</executionStartTime>
<executionDuration>10</executionDuration>

</jobInstanceExecutionVo>

Job Admin RESTful Services

3-10 Oracle Retail Bulk Data Integration Implementation Guide

</jobInstanceExecutionsVo>

JSON
{

“jobName”: “DiffGrp_Fnd_ImporterJob”,
“jobInstanceId”: 1,
“resource”:

“http://localhost:7001/bdi-batch-job-admin/resources/batch/jobs/DiffGrp_Fnd_
ImporterJob/1”,

[“jobInstanceExecutionVo”: {
“executionId”: 1,
“executionStatus”: “COMPLETED”,
“executionStartTime”:”2016-07-11 15:45:27.356”,
“executionDuration”: “10”

}]
}

}
Error Response

XML

<exceptionVo targetNamespace=””>
<statusCode>500</statusCode>
<status>INTERNAL_SERVER_ERROR</status>
<message>Internal Server Error</message>
<stackTrace></stackTrace> <!-- optional -->
</exceptionVo>

JSON

{
“statusCode”: “500”,
“Status”: “INTERNAL_SERVER_ERROR”,
“Message”: “Internal Server Error”,
“stackTrace”: “”
}

Data Service
Data Service is a RESTful service that provides end points to get data set information
based on job level information.

Get Data Set for job name and execution id

Job name - Extractor or downloader-transmitter or uploader job name

Execution id - Job execution id

This endpoint is used by a process flow to get the data set id after the extractor job is
run successfully.

Table 3–4 Data Service

REST Resource HTTP Method Description

/data/dataset/{jobName}/
executions/{jobExecutionId}

GET Gets a data set based on job
name and job execution id

/data/dataset/{jobName}/i
nstances/{jobInstanceId}

GET Gets a data set based on job
name and job instance id

/data/dataset/{jobName}ne
xtPending

GET Gets next pending data set based
on job name

Job Admin RESTful Services

Job Admin Services 3-11

Sample Request

http://localhost:7001/bdi-batch-job-admin/resources/data/dataset/Diff_Fnd_
ExtractorJob/executions/1

Sample Response

Returns response in either XML or JSON format.

<jobDataSetVo>
<interfaceModule>Diff_Fnd</interfaceModule>
<interfaceModuleDataControlId>2</interfaceModuleDataControlId>
<jobName>Diff_Fnd_ExtractorJob</jobName>
<jobDataSetInstance>

<jobInstanceId>1</jobInstanceId>
<jobDataSetExecutions>

<jobExecutionId>1</jobExecutionId>
</jobDataSetExecutions>

</jobDataSetInstance>
</jobDataSetVo>

Get Data Set for job name and instance id

Job name - Extractor or downloader-transmitter or uploader job

Instance id - Job instance id

Sample Request

http://localhost:7001/bdi-batch-job-admin/resources/data/dataset/Diff_Fnd_
ExtractorJob/instances/1

Sample Response

<jobDataSetVo>
<interfaceModule>Diff_Fnd</interfaceModule>
<interfaceModuleDataControlId>2</interfaceModuleDataControlId>
<jobName>Diff_Fnd_ExtractorJob</jobName>
<jobDataSetInstance>

<jobInstanceId>1</jobInstanceId>
<jobDataSetExecutions>

<jobExecutionId>1</jobExecutionId>
</jobDataSetExecutions>

</jobDataSetInstance>
</jobDataSetVo>

Get next pending data set for job name

This endpoint is applicable only to the downloader-transporter or uploader jobs.

Sample Request

http://localhost:7001/bdi-batch-job-admin/resources/data/dataset/Diff_Fnd_
DownloaderAndTransporterToRxmJob/nextPending

Sample Response

<jobDataSetVo>
<interfaceModule>Diff_Fnd</interfaceModule>
<interfaceModuleDataControlId>9</interfaceModuleDataControlId>

</jobDataSetVo>

Job Admin RESTful Services

3-12 Oracle Retail Bulk Data Integration Implementation Guide

Configuration of Job Admin
During the deployment of Job Admin, seed data gets loaded to various tables. Seed
data files are located in the bdi-<app>-home/setup-data/dml folder. If seed data is
changed, Job Admin need to be reinstalled and redeployed. For loading seed data
again during the redeployment, LOADSEEDDATA flag in the BDI_SYSTEM_
OPTIONS table need to be set to TRUE.

Jobs

The following job properties can be changed to improve the performance of the jobs.

Item-count - Number of items read by a job before it writes. Default size is 1000.

fetchSize - Number of items cached by JBDC driver. Default size is 1000.

Receiver Service

The Receiver Service allows maximum number of blocks for transaction based on the
following system option in BDI_SYSTEM_OPTIONS table.

receiverMaxNumBlocks - Default value is set to 10000

Seed data need to be changed to update the maximum number of blocks for the
Receiver Service. To update the seed data, set the LOADSEEDDATA flag to TRUE,
reinstall and redeploy Job Admin. The Value of the LOADSEEDDATA flag can be
changed from the Job Admin Manage Configurations Tab.

Job Admin Customization
During the deployment of Job Admin, seed data is loaded to various tables. Seed data
files are located in the jos-<app>-home/setup-data/dml folder. If seed data is
changed, Job Admin must be reinstalled and redeployed. In order to load seed data
again during the redeployment, the LOADSEEDDATA flag in the BDI_SYSTEM_
OPTIONS table must be set to TRUE.

During the deployment, Job XMLs get loaded to BDI_JOB_DEFINITION table. Job
XML files are located in the "jos-job-home/setup-data/META-INF/batch-jobs" folder.
If job xmls are changed, Job Admin must be reinstalled and redeployed. In order to
load job xmls during redeployment, the LOADJOBDEF flag in the BDI_SYSTEM_
OPTIONS table must be set to TRUE.

Note: Restart of job does not load job definition from the BDI_JOB_
DEFINITION table. Java Batch loads job xml from JOBSTATUS table
during the restart of a job.

If there is an issue with Job XML, job needs to be started after fixing
the job XML.

4

Job Admin UI 4-1

4 Job Admin UI

The BDI Job Admin UI is a web application that provides the GUI for managing batch
jobs and runtime.

The User Interface provides ability to:

■ Start/restart, and track status of jobs

■ Trace data

■ View diagnostic errors

■ Manage options at job and system level

■ View the logs

Job Admin UI Security
Security in the integration layer is a big concern for every retail enterprise. The
security system should be open enough to allow trusted remote applications to
integrate easily and, at the same time, lock down unauthorized remote access. To
address security concerns, the Job Admin utilizes the security models allowed in the
Oracle middleware and database systems.

Authentication
Both the Job Admin UI and REST Services are secured with SSL and basic
authentication.

Authorization
The below mentioned roles are defined to restrict access to operations in Job Admin.

■ BdiJobAdminRole

■ BdiJobOperatorRole

■ BdiJobMonitorRole

There are three categories of users in Job Admin: Job Administrators, Job Operators,
and Job Monitors. Batch jobs can be run from Job Admin UI or through the Batch REST
service. Here are the operations that can be performed by the users based on their role.

Function Admin Role Operator Role Monitor Role

Edit configuration
from UI

Yes No No

Monitoring Batch Jobs Using BDI Job Admin

4-2 Oracle Retail Bulk Data Integration Implementation Guide

Monitoring Batch Jobs Using BDI Job Admin
Batch jobs can be monitored using the Job Admin UI.

Batch Summary Tab

Figure 4–1 Batch Summary Tab

This tab shows the summary of the system and details about the latest batch job
executions. It can be used to quickly find out whether the latest jobs are successful or
not. The last section of this page displays the step summary of the selected job.

Manage Jobs Tab
This tab displays the list of available jobs with their details and allows you to Start a
job, Restart failed jobs, list the executions of a job.

Create/update/delet
e system options

Yes No No

Create/update/delet
e system credentials

Yes No No

View credentials Yes No No

Run Jobs Yes Yes No

Monitor jobs Yes Yes Yes

Function Admin Role Operator Role Monitor Role

Monitoring Batch Jobs Using BDI Job Admin

Job Admin UI 4-3

Figure 4–2 Manage Jobs Tab

Job Executions
This tab shows the executions of the selected jobs. It can be used to restart the failed
executions of a job. The Restart button is available only for restartable executions in the
status column. When the user clicks the restart button it is redirected to the job launch
tab with the restart option and pre-populated value of the job parameters from last run
of the execution. User can edit the value of the existing parameters except the
dataSetId and enter new parameters in comma separated format.

Job Launch
This tab can be used to launch the jobs. Job Parameters is an optional input to launch
the jobs. Multiple job parameters can be entered in comma separated value format. On
restart, the user is redirected to the Job Launch tab, and the launch button is replaced
with the restart button. The Job parameters values are pre-populated from the last
failed run of the instance. The user has an option to add or update existing key values,
except dataSetId.

Note: Editing the dataSetId during restart can result in errors.

Note: The url is a infrastructure parameter, the user is not allowed to
change its value.

DataSetId in job parameter is not supposed to be edited, and updating
same during restart can result into errors.

Monitoring Batch Jobs Using BDI Job Admin

4-4 Oracle Retail Bulk Data Integration Implementation Guide

Figure 4–3 Job Launch

Job Details
This tab shows the details of the selected job such as Job Description, Family, Rest
Service Url and Job Xml content.

Figure 4–4 Job Details

System Logs Tab
This tab shows logs at job and system level. If a job fails, the job level log provides
details about the failure. Information about a job in the log file starts and ends with a
banner that shows details such as job name, instance id, execution id and so on.

Monitoring Batch Jobs Using BDI Job Admin

Job Admin UI 4-5

Figure 4–5 System Logs Tab

Sample Begin Job Banner

2016-08-03T02:15:00,764 [[ACTIVE] ExecuteThread: '13' for queue:
'weblogic.kernel.Default (self-tuning)'] INFO DownloaderInterfaceJobListener -
Beginning of Downloader JOB_NAME(Diff_Fnd_
DownloaderAndTransporterToSimJob).

2016-08-03T02:15:00,764 [[ACTIVE] ExecuteThread: '13' for queue:
'weblogic.kernel.Default (self-tuning)'] INFO DownloaderInterfaceJobListener -
INTERFACE_MODULE(Diff_Fnd) EXECUTION_ID(3844) INSTANCE_ID(3844).

2016-08-03T02:15:00,764 [[ACTIVE] ExecuteThread: '13' for queue:
'weblogic.kernel.Default (self-tuning)'] INFO DownloaderInterfaceJobListener -

Sample End Job Banner

2016-08-03T02:15:02,080 [[ACTIVE] ExecuteThread: '13' for queue:
'weblogic.kernel.Default (self-tuning)'] INFO DownloaderInterfaceJobListener - End of
Downloader JOB_NAME(Diff_Fnd_DownloaderAndTransporterToSimJob).

2016-08-03T02:15:02,080 [[ACTIVE] ExecuteThread: '13' for queue:
'weblogic.kernel.Default (self-tuning)'] INFO DownloaderInterfaceJobListener -
INTERFACE_MODULE(Diff_Fnd) EXECUTION_ID(3844) INSTANCE_ID(3844).

2016-08-03T02:15:02,081 [[ACTIVE] ExecuteThread: '13' for queue:
'weblogic.kernel.Default (self-tuning)'] INFO DownloaderInterfaceJobListener - Total
time for Downloader job: 1 seconds.

2016-08-03T02:15:02,081 [[ACTIVE] ExecuteThread: '13' for queue:
'weblogic.kernel.Default (self-tuning)'] INFO DownloaderInterfaceJobListener -

It also shows whether it processed a data set or not. Here are the keywords that can be
used to search the job level log files.

Monitoring Batch Jobs Using BDI Job Admin

4-6 Oracle Retail Bulk Data Integration Implementation Guide

Diagonostics Tab
This tab shows general job level error information such as error description, stack trace
etc as well as job specific error information. Use this tab to identify where a job failed
and fix the issue.

Outbound Job Execution Errors

Figure 4–6 Outbound Job Executions Errors

The following information is displayed for outbound job execution errors. There can
be multiple outbound job execution errors for a job instance.

Key Word Description

JOB_NAME Name of the job

EXECUTION_ID Execution Id of the
job

INSTANCE_ID Instance Id of the job

TRANSACTION_ID Transaction Id
(Tx#<Job Instance
Id>)

INTERFACE_
MODULE

Name of the interface
module

INTERFACE_
SHORT_NAME

Name of the interface

PROCESSING_
DATA_SET

Indicates and shows
the details about the
data set that job is
processing

DATA_SET_
PROCESSED

Indicates that the job
successfully
processed the data
set

DATA_SET_FAILED Indicates that the job
failed to process the
data set

Monitoring Batch Jobs Using BDI Job Admin

Job Admin UI 4-7

Inbound Job Execution Errors
The following information is displayed for inbound job execution errors. There can be
multiple inbound job execution errors for a job instance.

Trace Data
This tab shows data movement in the BDI. Use this tab to verify that data moved from
the sender to destination inbound tables.

Sender Data

Figure 4–7 Sender Data

This tab shows the following information about the sender data by the sender side Job
Admin (for example bdi-rms-batch-job-admin)

Field Name Description

Partition Index Partition in which the error occurred

Block Number Block in which the error occurred

Begin Sequence Number Beginning sequence number in the block

End Sequence Number Ending sequence number in the block

Field Name Description

File Name Name of the file in which the error occurred

Begin Row Number Beginning row number in the file

End Row Number Ending row number in the file

Field Name Description

Transaction Id Transaction Id (Tx#<Job Instance Id>) of the job

Interface Module Name of the interface module

Job Name Name of the batch job

Monitoring Batch Jobs Using BDI Job Admin

4-8 Oracle Retail Bulk Data Integration Implementation Guide

Receiver Data

Figure 4–8 Receiver Data

This tab shows the following information about the receiver data by the destination
application (for example bdi-rxm-batch-job-admin).

Receiver Transactions

Receiver Transmission Details - Partition Level

Data Set Ready Time Time when sender moved the data outbound tables

Data Set Type Type of data set (FULL or PARTIAL)

Status Status of the job (COMPLETED or FAILED)

Transaction Duration Duration of the job

Field Name Description

Source Transaction Id Transaction Id of the sender job

Source System Name of the sender

Family Name of the interface module

Transaction Status Status of the transaction (COMPLETED or FAILED)

Duration Time it took to send data to Receiver

Source System URL URL of the source job

Field Name Description

Transmission Id Transmission Id of the partition

Family Name of the interface module

Interface Short Name Name of the interface

Field Name Description

Monitoring Batch Jobs Using BDI Job Admin

Job Admin UI 4-9

Receiver Transmission Details - Block Level

Uploader Data

Figure 4–9 Uploader Data

This tab shows inbound job execution details and importer data controls.

Inbound job Executions

Source System Partition Name Partition Number

Partition Begin Sequence
Number

Beginning sequence number in the partition

Partition End Sequence Number Ending sequence number in the partition

Begin Block Number Beginning block number in the partition

End Block Number Ending block number in the partition

Status Status of the transmission (COMPLETED or FAILED)

Duration Time it took to send data for a partition

Field Name Description

Block Number Block Number in a partition

Block Item Count Number of items in the block

Block Status Status (COMPLETED or FAILED)

File Location Location of the file for the block

Field Name Description

Transaction Id Transaction Id (Tx#<Job Instance Id>) of the uploader
job

Remote Transaction Id Transaction Id of the downloader job

Field Name Description

Manage Configurations

4-10 Oracle Retail Bulk Data Integration Implementation Guide

Importer Data Control

Manage Configurations
This tab allows you to view and edit configurations for the BDI jobs, and it also allows
the user to view, edit and create System Options.

Interface Module Name of the interface module (for example Diff_Fnd)

Source System Name of the source system (for example RMS)

Data Set Type Type of data set (FULL or PARTIAL)

Source Sys Data Set Ready Time Time when source system moved data set to outbound
tables

Data Set Ready Time Time when uploader job uploaded data set to inbound
tables

File Merge Level Merge level of the file (NO_MERGE, MERGE_TO_
PARTITION_LEVEL, MERGE_TO_INTERFACE_
LEVEL)

Status Status of uploader job (COMPLETED or FAILED)

Field Name Description

Interface Short Name Name of the interface

Begin Sequence Number Begin sequence number of data set in the inbound table

End Sequence Number End sequence number of data set in the inbound table

Data Partition Number of partitions used by uploader job

Thread Number of threads used by uploader job

Merge Strategy Merge strategy used for merging files

Auto Purge Data Flag that indicates whether files need to be cleaned up or
not

Field Name Description

Manage Configurations

Job Admin UI 4-11

Outbound Interface Controls

Figure 4–10 Outbound Interface Controls

This tab allows the user to manage the outbound interfaces and downloader and
transmitter options for BDI jobs. The user with Admin privileges can edit the
configurations.

Inbound Interface Controls

Figure 4–11 Inbound Interface Controls

This tab allows the user to manage the inbound interfaces, receiver and uploader
options for BDI jobs. The user with Admin privileges can edit the configurations.

Job Admin Troubleshooting

4-12 Oracle Retail Bulk Data Integration Implementation Guide

System Options

Figure 4–12 System Logs

This tab allows the user to view, edit and create system options. This page displays the
list of system options of the application. The user can modify the value of the existing
system options, create new system options and delete the existing system options. The
user need admin privileges for editing and creating system options. The Search option
based on system options name and value is also provided on this page.

Job Admin Troubleshooting
This section describes the job admin errors and its troubleshooting.

BDI apps deployment Error
Issue:

Bdi Job Admin deployment can run into this error if database credentials are invalid:

Caught: javax.management.RuntimeMBeanException:
java.lang.RuntimeException:
weblogic.management.provider.EditFailedException:
java.lang.NullPointerException

javax.management.RuntimeMBeanException:
java.lang.RuntimeException:
weblogic.management.provider.EditFailedException:
java.lang.NullPointerException

at weblogic.utils.StackTraceDisabled.unknownMethod()

Caused by: java.lang.RuntimeException:
weblogic.management.provider.EditFailedException:
java.lang.NullPointerException

... 1 more

Caused by: weblogic.management.provider.EditFailedException:
java.lang.NullPointerException

... 1 more

Job Admin Troubleshooting

Job Admin UI 4-13

Caused by: java.lang.NullPointerException

... 1 more

Solution:

Undo all changes in the Weblogic domain session. Redeploy app with setting up new
credentials and verify deployment is successful.

BDI Job Admin runtime WSMException
Issue:

Log files contain this exception:

oracle.wsm.common.sdk.WSMException: WSM-07620 : Agent cannot
enforce policies due to either failure in retrieving polices or
error in validations, detail= "WSM-02557 The documents required
to configure the Oracle Web Services Manager runtime have not
been retrieved from the Policy Manager application (wsm-pm),
possibly because the application is not running or has not been
deployed in the environment. The query
"&(@appliesTo~="REST-CLIENT()")(policysets:global:%)" is queued
for later retrieval.

Solution:

Follow BDI Installation guide, and verify WSM- policy manager is configured for
admin server URL.

Open weblogic domain console and Target wsm-pm app to Admin Server.

Bounce Admin server and verify wsm-pm app is in Active State.

REST Service from SOAP UI for Downloader and Transporter job
Issue:

Diff_Fnd_DownloaderAndTransporterJob is successful, Job status is "completed" but
data not transferred from outbound to inbound table and .csv file not created

Rest call to DownloaderAndTransporterJob is successful, Job status is "completed" but
data not transferred from the outbound to inbound table and .csv file not created

Solution:

1. Verify the receiverEndpointUrl for the Table DownloaderTransmitterOptions is
updated to point to where receiver app (for eg: RXM) is deployed in my case
‘blr00abi.idc.oracle.com:7001’ in bdi_rms_seed_data.sql.

2. Verify the values in the Interface table DownloaderInterfaceDataControl such as
begin and end sequence number matches with the values mentioned in bdi_rms_
seed_data.sql.

3. Verify the values in the interface table in DB DownloaderTransmitterOptions,the
receiverEndpointUrl is updated to match with bdi_rms_seed_data.sql.

BDI Job Admin not able to find UploaderJob.xml file
Issue:

BDI App B (SIM) Job Admin GUI is showing this exception:

Job Admin Troubleshooting

4-14 Oracle Retail Bulk Data Integration Implementation Guide

Caused By: java.lang.RuntimeException: Could not find
jobName(OrgHier_Fnd_UploaderJob) xml file. You may have renamed
the job file or your job repository has more jobs than your
application. To resolve the issue either delete the job
repository or add the correct job xml file to the app.

Managed server log contains:

Truncated. see log file for complete stacktrace

Caused By: java.lang.RuntimeException: Could not find
jobName(OrgHier_Fnd_UploaderJob) xml file. You may have renamed
the job file or your job reposiotry has more jobs than your
application. To resolve the issue either delete the job
repository or add the correct job xml file to the app.

at
com.oracle.retail.bdi.batch.job.operator.JobOperatorServiceBean.
allAvailableBatchJobs(JobOperatorServiceBean.java:167)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native
Method)

at
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessor
Impl.java:62)

at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethod
AccessorImpl.java:43)

at java.lang.reflect.Method.invoke(Method.java:498)

Truncated. see log file for complete stacktrace

Solution:

The process flow has changed and part or all of a flow has been removed, but batch-db
has not been updated to match. Either log in to the database and delete references to
the job from all tables, or recreate the batch-db using RCU and redeploy BDI.

Job Fails and Job Admin Log Files Contain No Details of the Failure
Issue:

A job fails and the Job Admin log files contain no evidence of or details about the
failure.

Solution:

Take a look at the WebLogic Server log files to identify the root cause of the job failure.
One example of this is improper data source configuration.

5

Process Flow 5-1

5 Process Flow

A process flow is a composition of one or more activities. It is written in a DSL script
that contains all the activities that make a data flow from source to destination
complete.

A process flow is a generic concept and is not limited to BDI. However all the
out-of-box process flows are for data transfers from a retail application to one or more
retail applications.

A process flow encapsulates a sequence of activities. An activity can be synchronous or
asynchronous. In BDI some of these activities are invocations of batch jobs.

Figure 5–1 Process Flow

Process Flow
This section describes the process flow definitions.

Process Flow

5-2 Oracle Retail Integration Bus Implementation Guide

DSL (Domain Specific Language)
Process flow definition is specified in a Domain Specific Language (DSL) built on the
top of Groovy. Since Groovy is built on the top of Java Virtual Machine (JVM) Groovy
can understand Java and Groovy language constructs. Hence the process flow DSL can
understand the DSL, Groovy and Java language constructs. A process is a list of
activities. "begin", "end" and "activity" are the main DSL keywords used in process
flow definition. These are described in detail below.

Begin Activity
The "begin" activity in process flow definition appears as the first activity. There
should be only one "begin" activity. The out of the box process flows may not contain
any executable statements in this activity. This activity is intended to be the one used
for any initialization needed for the process flow.

Activity
Activity has two parts. Name and Action. Name attribute is mandatory and should be
used to name the activity.

The Action section is where the executable code should reside. Any Groovy or Java
code can be coded in this section.

There can be one or more Activities in a process.

End Activity
The "end" activity in the process flow definition appears as the last activity. There
should be only one "end"activity. The out-of-the-box process flows may not contain
any executable statements in this activity. This activity is intended to be the one used
for any finalization needed for the process flow.

Process Variables
Variables used between activities can be created and stored in the processVariables
map. The process engine also uses some of the variables for its own working in the
process variable map. These variables are prefixed with "bdi_internal_". These
variables must not be modified inside any custom code.

Here is how you can use the process variable map for your own use.

// Set Variable
processVariables["VariableName"] = "Some Value"
// Use a variable value
def anotherVariable = processVariables["VariableName"]

External Variables
Some of the system level configuration values are available in the externalVariables
map. These values are read-only. The process flow DSL can use these values, but
should not attempt to change it.

For example,
externalVariables["rxmJobAdminBaseUrlUserAlias"]

Statuses
Each activity instance and the process instance maintain the status of execution in the
process schema. The following are the possible values for Activities and Process.

Process Flow

Process Flow 5-3

At the "begin" activity, the process is marked as PROCESS_STARTED. If any activity
fails, the process is marked as PROCESS_FAILED. After the "end" action is completed,
the process is marked PROCESS_COMPLETED.

A complete list of process flow status are:

■ PROCESS_STARTED

■ PROCESS_FAILED

■ PROCESS_COMPLETED

■ PROCESS_STOPPING

■ PROCESS_STOPPED

Similar to process statuses, each activity has also a status. There values are :

■ ACTIVITY_STARTED

■ ACTIVITY_FAILED

■ ACTIVITY_COMPLETED

■ ACTIVITY_WAITING_DUE_TO_HOLD_STARTED

■ ACTIVITY_WAITING_DUE_TO_HOLD_COMPLETED

■ ACTIVITY_WAITING_DUE_TO_JOIN_STARTED

■ ACTIVITY_WAITING_DUE_TO_JOIN_COMPLETED

■ ACTIVITY_SKIPPED

■ ACTIVITY_STOPPING

■ ACTIVITY_STOPPED

All the runtime status are persisted in the process schema at runtime when the DSL is
executed.

Process Flow DSL
This section describes the process flow DSL.

Process Flow DSL characteristics
The following are the characteristics of the Process Flow DSL:

■ Every process flow must have a name. The process flow name must match with
the filename that the process flow is saved into.

■ Process flows are written in a DSL and saved as .flo files.

■ Process flow is made up of two special activities called “begin” and “end” and
bunch of user defined activity nodes.

■ The “begin” and “end” activity will always run.

■ User defined activity may or may not run based on “SKIP” or moveTo logic.

■ Every user defined activity must have a unique name within a process flow.

■ The activity names are used to transfer control from one activity to another.
Jumping to an activity is possible using moveTo function.

■ Every activity has an “action” block that does the real work. Groovy/Java code
written inside the action block.

Process Flow

5-4 Oracle Retail Integration Bus Implementation Guide

■ Local variables can be defined within the action block.

■ Process variables are defined on top and are accessible to all activities within the
process.

■ There are few implicit variables, like $activityName, $name.

■ Errors can be thrown using “error <some message>” function.

■ Built-in Conditional branching, looping, error handling.

■ Predefined functions for common tasks to reduce boilerplate code.

■ Built in REST service DSL to be able to call service with just one line.

■ Services available to start/restart/monitor process flows programmatically.

■ Can handle chaining of Process Flows.

■ Has a built in Service Credential management framework.

■ Hybrid Cloud ready.

■ Built in activity SKIP functionality.

■ Built in activity HOLD and RELEASE functionality

■ Built in bulk skip and Hold functionality.

■ Built in SPLIT and JOIN functionality between process flows

– SPLIT - one to many

– JOIN - many to one

DSL Keywords
This section lists the DSL keywords:

DSL Blacklisted Keywords – In the process definition, changes can be made in DSL
(Domain Specific Language), Groovy, or Java. Since this file is essentially a program, it
can modified to cause damages (e.g., delete files from the system). We have introduced
a list of keywords that are potentially dangerous to use. If a blacklist word is present in

DSL Keywords Description

process Identifies the process flow. Only one keyword in a process flow.

name Used for naming processes and activities.

var Used for initializing process variables.

begin Begin activity block is the first activity in the DSL. It is
mandatory and can be used for initialization.

activity The executable component of the process flow. A process flow is
composed of many activities.

action Action section is where the executable code should reside. Any
Groovy or Java code can be coded in this section.

on "okay" moveTo Use these keywords inside an activity to move to another
activity.

on "error" moveTo Use these keywords inside an activity to move to error activity.

end "end" activity in process flow definition appears as the last
activity. There should be only one "end"activity.

Process Flow

Process Flow 5-5

the DSL, application deployment will fail and an error will be written to the server log
(for example, java, groovy, thread etc.).

Process Flow API
This section describes the Process Flow API.

DSL API USAGE Description

triggerProcess(def
baseUrl, String
processDslName,
String credentials,
String
processParameters)

triggerProcess(externalVaria
bles["url"], "ProcessABC",
externalVariables["urlUserA
lias"], "a=b,c=d")

Method to start a process from DSL.
This method sends a POST request to
Process Flow to start a process. It
returns process

startOrRestartJob(def
baseUrl, String
jobName, String
credentials)

startOrRestartJob(externalV
ariable s["url"],"JobAbc",
externalVariables["urlUserA
lias"])

Method to start or restart a job in Job
Admin. This method sends a POST
request to a REST end point in Job
Admin.

waitForJobComplete
dOrF ailed(def
targetActivity, def
url, String
credentials, int
waitMinutes=1)

waitForJobCompletedOrFai
led("Jo
bAbcActivity",externalVaria
bles["u rl"] +
"/resources/batch/jobs/Job
Abc/"

+

processVariables["jobExecut
ionId"]

,
externalVariables["urlUserA
lias"])

Method to wait for job to be
completed or to fail. This method
checks the status of the job and waits
until status is COMPLETED or
FAILED.

waitForProcessInstan
cesTo
ReachStatus(def
processInstanceList,
def
targetStatus=PROCE
SS_ COMPLETED,
def logicalAndOrOr
= LOGICAL_AND,
int waitMinutes=1)

waitForProcessInstancesTo
ReachSt atus(["P~1", "Q~1"],
PROCESS_ COMPLETED,
LOGICAL_OR)

Method to wait for other process
instances to reach a status.

waitForProcessName
sToR
eachStatus(Map,
processNameToNum
berOf
ExecutionsAfterStart
Mark erTime,
LocalDateTime
startMarkerTime, def
targetStatus =
PROCESS_
COMPLETED, def
logicalAndOrOr =
LOGICAL_AND, def
whichExecutionStatu
s = LAST_
EXECUTION_
STATUS, int
waitMinutes

waitForProcessNamesToRe
achStat us([P:3, Q:3, R:3],
now().minusDays(1),
PROCESS_ COMPLETED,
LOGICAL_AND, LAST_
EXECUTION_STATUS)

Method to wait for processes with
names to reach a status.

Process Flow

5-6 Oracle Retail Integration Bus Implementation Guide

persistGlobalUserDat
a(Str ing key, String
value)

persistGlobalUserData("key
", "value")

Method to persist data to be shared
with other processes. Persists key
value pairs in BDI_ SYSTEM_
OPTIONS table.

String
findGlobalUserData(
Strin g key)

findGlobalUserData("key") Gets value from BDI_ SYSTEM_
OPTIONS table for a given key.

Map
findAllGlobalUserDa
ta(Str ing key)

findAllGlobalUserData() Returns a Map with all user data.

removeGlobalUserDa
ta(St ring key)

removeGlobalUserData("ke
y")

Removes data for given key.

Error error "report my error" Generate an error condition and jump
to the end activity. Process will be
marked as failed.

POST POST[externalVariables.url]
^exter
nalVariables.urlUserAlias

def response =
(POST[externalVariables.url
] + customHttpHeaders &
MediaType.APPLICATION
_JSON_TYPE ^
BasicAuth.alias1 |
MediaType.APPLICATION
_JSON_TYPE) << {} as
String

Method to make a POST call to a url.

externalVariables.url - URL system
option key configured in System
Options table

customHttpHeaders - [a:"b", c:"d"]

Use "+" to provide custom http
headers

Use "&" to provide response media
type

Use "^" to provide basic authentication
alias. User name and password will be
Base64 encoded by the API.

Use "|" to provide entity media type

Use "<<" to post data. The data will be
in the format provided in entity media
type.

GET GET[externalVariables.url]^
extern
alVariables.urlUserAlias

def response =
(GET[externalVariables.url]
+ customHttpHeaders &
MediaType.APPLICATION
_JSON_TYPE ^
BasicAuth.alias1) as String

Method to make a GET call to a URL.

externalVariables.url - URL system
option key configured in System
Options table

customHttpHeaders - [a:"b", c:"d"]

Use "+" to provide custom http
headers

Use "&" to provide response media
type

Use "^" to provide basic authentication
alias. User name and password will be
Base64 encoded by the API

DSL API USAGE Description

Process Flow

Process Flow 5-7

Process Flow Variables
This section describes the Process Flow Variables.

DELETE DELETE[externalVariables.
url]^ext
ernalVariables.urlUserAlias

def response =
(DELETE[externalVariables.
url] + customHttpHeaders
&
MediaType.APPLICATION
_JSON_TYPE ^
BasicAuth.alias1) << {} as
String

Method to make a DELETE call to a
URL.

externalVariables.url - URL system
option key configured in System
Options table

customHttpHeaders - [a:"b", c:"d"]

Use "+" to provide custom http
headers

Use "&" to provide response media
type

Use "^" to provide basic authentication
alias. User name and password will be
Base64 encoded by the API

log.info

log.debug

log.error

log.debug "Activity Name:

$activityName"

Adds information to log file.

Variables Implicit or Explicit Usage Examples Description

externalVariables Implicit def myVar =
externalVariables['my
Ke y']

These are global
variables that apply
to all process flows. It
comes from System
Options table.
Installation specific
key values will be
here.

processVariables Implicit var(["myVar1":"prq",
"myVar2":"xyz",
"myVar3":"mno"])

//get value def aVar
=

processVariables['my
Var

1']

//put new value
processVariables['my
Var

2'] = "abc"

These are process
level variables that
can be shared by all
activities. Process
variables are
automatically
persisted. Restart of a
process recovers the
process variables to
the right value where
it left off in the
previous run. These
are the most common
variables you should
use. Process variables
must be declared
using the var key
word.

DSL API USAGE Description

Process Flow

5-8 Oracle Retail Integration Bus Implementation Guide

Process Flow Instrumentation
When the process engine executes the process flow, the before and after snapshots of
the activity are recorded in the process schema.

The information is reported through the Process Flow Admin application. Process
Flow Admin is a web application that provides a GUI to manage task workflows. This
is useful for tracking the process flows as well as troubleshooting. The snapshots also
help when restarting a failed process. From the schema, the process engine can
recreate the context to execute a restart and can resume execution from the activity that
failed in the previous run.

Process Flow Monitor Web Application
Process Flow (Admin UI) is a web user interface provided by Process Flow where
users can view and execute processes, including managing, updating process flow,
manually running processes, viewing process executions and process flow logs.

The following describes various functions available in the Process Flow UI in the
current release.

Local variables Explicit action{

def a = "xyz" def i = 7

Any variables can be
created with the
action block and used
as local variables.
Local variables

defined in one
activity is not
accessible in another

Global external
variables

Explicit persistGlobalUserDat
a(" key1", "value1")

def xyz =

findGlobalUserData("
key

1")

removeGlobalUserDa
ta(" key1")

For inter process
dynamic variable
sharing one can
persist new variable
to DB.

activityName Implicit println "My activity
is

${activityName}"

Current activity
name.

Name Implicit Println "My process

name is
${processName}"

Current process
name.

processExecutionId Implicit Println "Current
process execution Id
is
${processExecutionId
}"

Current process
execution Id

Note: It is recommended to use the Chrome web browser to access
Process Flow UI since the calendar widget for datetime fields are
supported by Chrome browser and not by Firefox or IE as of now.

Variables Implicit or Explicit Usage Examples Description

Process Flow

Process Flow 5-9

Process Flow Live tab

Figure 5–2 Process Flow Live Tab

The Process Flow Live tab shows the details of the currently running processes. The
first section shows the summary of all processes running in the system. The next
section shows the list of all processes running since midnight. The last section shows
the activity details of the selected process. Users also have the option to search for a
process by its name.

Build version and date is displayed on the info icon when a user selects the same. The
icon is on the extreme right top corner of the page.

Manage Process Flow Tab

Figure 5–3 Manage Process Flow Tab

The Manage Process Flow tab allows the user to Start a process flow, Restart a failed
process flow, View/Edit a process flow, Stop a running process flow, List the
executions instances of a process flow. User can search process details on this tab. A
failed process flow instance can be restarted only if it is the latest failed instance and

Process Flow

5-10 Oracle Retail Integration Bus Implementation Guide

there are no successful executions after that. A process flow can be edited only by a
user with Admin privileges.

Process Flow Executions

Figure 5–4 Process Flow Executions

This tab shows the executions of the selected process. It can be used to restart the
failed executions of a process. The Restart button is available only for restartable
executions in the status column. When the user clicks the restart button it is redirected
to the process launch tab.

Process Flow Configurations

Figure 5–5

This tab provides various features for activity configurations for the selected process
like Skip, Hold, Callback. Admin and operator have permissions to update activity
configurations.

Process Flow

Process Flow 5-11

Launch Process Flow

Figure 5–6 Launch Process Flow

This tab can be used to start or stop process the selected process. Start Process subtab
used to launch Process. Process Parameters is an optional input from the user to
launch the process. Process parameter acts as query parameter and refers to a key
value pair. Multiple process parameters can be entered in comma separated value
format. Stop Process subtab is used to Stop a process execution. Stop will be a graceful
stop, which means current executing activity will be first completed and then process
will be stopped. If activity is not running, Stop will not bring any action.

Process Flow Details

Figure 5–7 Process Flow Details

This tab shows process definition in form of a DSL file configured during deployment
of the selected process. The Admin user also has the option to modify process DSL.
Once updated the process DSL from the UI, changes will take into effect into the BDI_
PROCESS_DEFINITION table and no need for process redeployment.

Process Flow

5-12 Oracle Retail Integration Bus Implementation Guide

Historical Process Flow Executions Tab

Figure 5–8 Historical Process Flow Executions Tab

The Historical Process Flow Execution tab allows the user to look at the history of
process flow executions. The user can specify a date, a time interval and process status.
The application will list all the process flow executions matching the criteria. The User
can select any of the flow to see the activities details of that execution instance. The
page also provides the option to view the before and after values of all process
variables for each activity.

Manage Configurations Tab

Figure 5–9 Manage Configurations Tab

The Manage Configurations tab allows users to view, edit and create system options,
configure process notifications and log levels. This page displays the list of system
options of the application. The User can modify the value of the existing system
options, create new system options and delete the existing system options. The User
needs admin privileges for editing and creating system options. The Search option
based on the system options name and value is also provided on this page.

Process Flow

Process Flow 5-13

System Logs Tab

Figure 5–10 System Logs Tab

The System Logs tab shows all the log files created by the process flow execution.
Clicking on the View icon will show the log file contents in the screen.

Process Flow Notification Feature
The Process Flow notification options can be set in the System Options of the Process
Flow. This can be done either at deployment time (through seed data) or at runtime
(through the Manage Configuration tab of the Process Flow Monitoring application)

The options available for notification are:

■ processFlowNotification.<scope>.enable - value must be True or false. This is for
global enabling or disabling of process flow notification.

■ processFlowNotification.<scope>.onStart - value must be True or false. True
means notification will be sent at the start of the process.

■ processFlowNotification.<scope>.onRestart - value must be True or false. True
means notification will be sent at the restart of the process.

■ processFlowNotification.<scope>.onCompletion - value must be True or false.
True means notification will be sent at the completion of the process.

■ processFlowNotification.<scope>.onFailure - value must be True or false. True
means notification will be sent when the process fails.

■ processFlowNotification.<scope>.recipients - list of recipient email ids

■ processFlowNotification.<scope>.subject – Template of the email subject line

■ processFlowNotification.<scope>.content – template of email content

where <scope> value is global or the Process Name.

If Process Name is specified, the global notification option is ignored for that process.
For Subject and Content, if nothing is specified either at the global or process scope, an
internal default format is used.

Process Flow

5-14 Oracle Retail Integration Bus Implementation Guide

If Mail Session is not setup in WebLogic, notifications will not be sent. If
processFlowNotification.<scope>.recipients is not set, the value from mail.to property
in the WebLogic Mail Session is used.

For Subject and Content template, following variables can be used. The variable is case
sensitive and the format must match exactly as given below. For multi-line content, \n
can be used to indicate line breaks.

${processUrl}

${processName}

${processExecutionId}

${processStartTime}

${processEndTime}

${processStatus}

Persisting Process Notifications
All process notifications are persisted to the BDI_EMAIL_NOTIFICATION table. There
is a subtab Process Notifications added in Manage Configurations tab which displays
all the notifications.

One notification icon appears right top corner of the screen adjacent to the user if there
is any notification in PENDING status. User will be navigated to the Process
Notifications subtab by clicking on the image.

User can modify the status to COMPLETED after going through the notification and
click on save button so that next time it doesn't appear on the screen.

Figure 5–11 Persisting Process Notifications

Process Restart
When the activities within a process flow fail, the process status is marked as failed. A
failed process flow can be restarted. If there are multiple failed processes, only the
latest failed instance can be restarted.

When a process flow is restarted, the system knows the activity that failed in the
previous run. During restart, the process engine will skip all the activities prior to the
failed activity. It will restore the context for the activity and resume execution at the
failed activity.

Note: Restart is for an already run and failed instance. This is
different from running a new instance of the process flow.

Process Flow

Process Flow 5-15

Process flow execution does not keep the activity history at restart. It will overwrite
the activity records on restart.

Statuses
Each activity instance and the process instance maintain the status of execution in the
process schema. The following are the possible values for Activities and Process.

At the begin activity, the process is marked as PROCESS_STARTED. If any activity
fails, the process is marked as PROCESS_FAILED. After the end action is completed,
the process is marked PROCESS_COMPLETED. A complete list of process flow
statuses includes:

■ PROCESS_STARTED

■ PROCESS_FAILED

■ PROCESS_COMPLETED

■ PROCESS_STOPPING

■ PROCESS_STOPPED

Similar to process statuses, each activity also has a status. The values include:

■ ACTIVITY_STARTED

■ ACTIVITY_FAILED

■ ACTIVITY_COMPLETED

■ ACTIVITY_WAITING_DUE_TO_HOLD_STARTED

■ ACTIVITY_WAITING_DUE_TO_HOLD_COMPLETED

■ ACTIVITY_WAITING_DUE_TO_JOIN_STARTED

■ ACTIVITY_WAITING_DUE_TO_JOIN_COMPLETED

■ ACTIVITY_SKIPPED

■ ACTIVITY_STOPPING

All the runtime statuses are persisted in the process schema at runtime when the DSL
is executed.

Activity Features
This section describes the Activity features.

■ Skip Activity

■ REST Endpoint to Set the Skip Activity Flag

■ Hold/Release Activity

■ REST Endpoint to Set the Hold Activity Flag

■ Bulk Skip/Hold

■ Callback Service

■ How to Start Process Flow with Input Parameters

■ Call Back from the Process Flow

■ How to Invoke the Callback Service Declaratively

■ Process Flow Did Not Start

Process Flow

5-16 Oracle Retail Integration Bus Implementation Guide

■ Deleted Process Flow Still Listed in the UI

Skip Activity
Activities in a process flow can be skipped by setting the skip activity flag through the
Process Flow Configurations tab in Process Flow UI or REST endpoint. Skip flag can
be set to expire based on date and time. If expiry date is not provided, then that
activity will be skipped until skip flag is removed. When an activity is set to skip,
process flow engine skips that activity and runs the next activity in the flow.

REST endpoint to set the skip activity flag

/batch/processes/<processName>/activities/<activityName>?skip=true

Hold/Release Activity
Activities in a process flow can be paused by setting the hold activity flag through the
Process Flow Configurations tab in Process Flow UIor REST endpoint. Hold flag can
be set to expire based on date and time. If expiry date is not provided, then that
activity will be paused until hold flag is removed, and process will remain in
PROCESS_STARTED state. When an activity is set to hold, process flow engine waits
on that activity until hold flag is removed or time expired, and activity state will be
moved to ACTIVITY_WAITING_DUE_TO_HOLD_STARTED.

REST endpoint to set the hold activity flag

/batch/processes/<processName>/activities/<activityName>?hold=true

Note: Don't try to Stop a waiting activity, as it can result into deadlock state.

Bulk Skip/Hold
Bulk skip or hold allows to set skip and/or hold flag for a list of activities in multiple
process flows.

REST Endpoint: /batch/processes/skip-or-hold POST Data:

{"processActivities": [
{"processName" : "…",
"activityName": "…",
"skip" : true, false if not specified
"hold" : false, false if not specified
"actionExpiryDate" : "optional",
"comments" : "optional"

},
{…}

]
}

Curl Command to set bulk skip/Hold
curl -i --user processadmin:processadmin1 -X POST -H
"Content-Type:application/json"
http://host:port/bdi-process-flow/resources/batch/processes/skip-or-hold -d
'{"processActivities": [
{"processName" : "OrgHier_Fnd_ProcessFlow_From_RMS", "activityName": "OrgHier_Fnd_
ExtractorActivity", "skip":true},
{"processName" : "DiffGrp_Fnd_ProcessFlow_From_RMS", "activityName": "Activity1",
"skip":true}
,{"processName" : "DiffGrp_Fnd_ProcessFlow_From_RMS", "activityName": "Activity2",
"skip":true}
]

Process Flow

Process Flow 5-17

}'

Output
{"processActivities":[{"actionResult":"OK","activityName":"OrgHier_Fnd_
ExtractorActivity","processName":"OrgHier_Fnd_ProcessFlow_From_
RMS"},{"actionResult":"OK","activityName":"Activity1","processName":"DiffGrp_Fnd_
ProcessFlow_From_
RMS"},{"actionResult":"OK","activityName":"Activity2","processName":"DiffGrp_Fnd_
ProcessFlow_From_RMS"}],"netResponse":"SUCCESS"}

Callback Service
Process Flow engine can be configured to call a rest service at each activity. This is
useful if the process flow is invoked by an external system (typically a workflow
system) and the system wants to be informed of the progress of each activity. This
callback can be configured declaratively or programmatically as needed.

The external system will have to implement the CallBack Service that will allow it to
receive information from the BDI process flow. The external system can call the the
process flow passing the context information as process flow parameters. The process
flow will pass the information back when it makes the CallBack Service call.

How to start Process Flow with input parameters?

To start a bdi process flow user has to make a REST service call to URL
(http://<host>:<port>/bdi-process-flow/resources/batch/processes/operator/<proc
essName>) . The call must be a POST call to the URL.

The process flow start call accepts http query parameters. The format of the query
parameters are as follows:

http://localhost:7001/bdi-process-flow/resources/batch/processes/<ProcessName>?
processParameters=callerId=<value1>,correlationId=<value2>,callBackServiceDataDe
tail.<name1>=<value3>,callBackServiceDataDetail.<name2>=<value4>

Spaces are not allowed in query parameters and must be separated by commas.

Example: http://localhost:7001/bdi-process-flow/resources/batch/processes/Abc_
Process?processParameters=callerId=123,correlationId=abc,callBackServiceDataDetail.
def=xyz,callBackServiceDataDetail.abc=123

Following are the context information that need to be passed to BDI process flow from
calling system.

1. callerId: CallerId parameter is used to identify the invoker of process flow.

2. correlationId: Correlation id is the main identifier used by the calling system to
tie the process flow Start call to the eventual CallBack Service call.

3. callBackServiceDataDetail.<name>= These are additional key value pairs that
may be required in future as required by the caller.

All of the above parameters are optional. However, if the context is not passed the
caller may not be able to associate the invocation with the callback.

Call back from Processflow

A new method (invokeCallBackService) is available for Process Flow DSL that will
allow process flow to call an external service. This service has following features.

■ The method internally invokes a REST call to the provided URL

Process Flow

5-18 Oracle Retail Integration Bus Implementation Guide

■ The method uses Basic Authentication for the rest call. The credentials for the
method call must be available in the process flow.

■ The payload sent from process flow to the invoking application follows the
contract as shown in the example in the next section. All of the values, other than
keyValueEntryVo, are populated by the Process Flow engine. The DSL writer can
modify the keyValueEntryVo before the callback to pass any custom value from
the DSL to invoking application

■ The result of the callback REST service must be a String value.

■ If the callback service invocation fails for any reason (.e.g., network issue), the
process flow activity fails and the process flow is marked as failed.

How to invoke the Callback Service declaratively

■ Setup the callback URL in processflow system options. To configure a callback
URL you should add system options like <serviceName>CallbackServiceUrl, for
eg., processCallbackServiceUrl.

– In Process Flow admin console, navigate to Manage Configurations tab and
System Options sub-tab.

Figure 5–12 System Options Tab

– Scroll down to Create New System Options, enter System Option Name and
System Option Value. Url should be a valid ReST Service.

Process Flow

Process Flow 5-19

Figure 5–13 Create New System Option Value

– Click Save.

Figure 5–14 View/Edit System Options

■ Setup the callback URL credential alias in process flow. To add callback URL
credential alias you should add credential alias like
<serviceName>CallbackServiceUrlUserAlias, for eg.,
processCallbackServiceUrlUserAlias.

– In the Create New System Options section, select Create Credentials checkbox.

Process Flow

5-20 Oracle Retail Integration Bus Implementation Guide

Figure 5–15 Create Credentials

■ Enter System Option Name, Username and Password for the URL provided in the
previous step. If the System Option Name for the URL is
processCallbackServiceUrl then System option name for credential should be
processCallbackServiceUrlUserAlias.

Figure 5–16 View/Edit System Options

■ Click Save.

Process Flow

Process Flow 5-21

Figure 5–17 Save System Options and Credentials

■ Navigate to Manage Process Flow tab and select process flow, go to Process Flow
Configurations sub-tab.

■ Select Callback checkbox for the activities you want callback to be enabled. Select
Callback URL from drop down list.

Figure 5–18 Process Flow Configurations

■ Click Save.

Note: Credentials created through UI are available after server
restart, but after redeployment of the application credentials have to
be created again.

Process Flow

5-22 Oracle Retail Integration Bus Implementation Guide

Figure 5–19 Save Process Flow Configuration

How to invoke the Callback Service programmatically

From the Process Flow DSL activity, you can invoke the callback service as shown in
the examples below. The callBackServiceUrl and callBackServiceUrlUserAlias property
must be setup in the System Options inside process flow.

Example 1: Short Form

Add the following line inside BDI process flow activity.

def retValue = invokeCallBackService(externalVariables.callBackServiceUrl,
externalVariables.callBackServiceUrlUserAlias).

Example 2: Long Form

In the long form API the callBackServiceData is an implicit parameter that is
automatically defined and user can update it with additional data inside an activity if
they want.

Add the following line inside BDI process flow activity.

//optionally update some data

callBackServiceData.keyValueEntryVo[0].key = "Some Key"

callBackServiceData.keyValueEntryVo[0].value = "Some Value"

def retValue = invokeCallBackService(externalVariables.callBackServiceUrl,
externalVariables.callBackServiceUrlUserAlias, callBackServiceData)

Callback request Payload structure

The BDI process flow will make a POST REST call to the callBackServiceUrl passing in
the following payload. JSON is the default content type.

JSON Payload Contract

{

"processName": "Abcdef_Process",

Process Flow

Process Flow 5-23

"processExceutionId": "123456",

"activityName": "Def_Activity",

"activityExecutionId": "12345678",

"callerId": "XYZ",

"correlationId": "987654321",

"keyValueEntryVo": [

{

"key": "abc",

"value": "def"

},

{

"key": "pqr",

"value": "123"

}

XML Payload Contract

<?xml version="1.0" encoding="UTF-8" ?>
<callBackServiceVo>
<processName>Abcdef_Process</processName>
<processExceutionId>123456</processExceutionId>
<activityName>Def_Activity</activityName>
<activityExecutionId>12345678</activityExecutionId>
<callerId>XYZ</callerId>
<correlationId>987654321</correlationId>
<keyValueEntryVo>
<key>abc</key>
<value>def</value>
</keyValueEntryVo>

<keyValueEntryVo>
<key>pqr</key>
<value>123</value>
</keyValueEntryVo>
</callBackServiceVo>

CallBackService Error message contract

Call Back Service Scenarios

Activity Type
Activity Action
(Skip or Hold)

Callback
behaviour (if
callback
enabled)

Activity Status
sent by Callback

Activity Status if
Callback fails

Any None Callback will
be called after
action part is
complete

ACTIVITY_
COMPLETE or
ACTIVITY_
FAILED
according to the
action part
success or failure.

ACTIVITY_FAILED

Process Flow

5-24 Oracle Retail Integration Bus Implementation Guide

Skip Callback will
be called after
action part is
complete

ACTIVITY_
SKIPPED

ACTIVITY_FAILED

Hold Callback will
be called
when hold is
released and
after the action
part of the
activity runs

ACTIVITY_
COMPLETE or
ACTIVITY_
FAILED
according to the
action part
success or failure.

ACTIVITY_FAILED

Special Cases

startOrRestartJ
obActivity

None Callback will
be called as
soon as the job
start or restart
call is
complete

ACTIVITY_
COMPLETE if
the job was
started or
restarted
successfully.
ACTIVITY_
FAILED if the job
was not started
or restarted
successfully.

ACTIVITY_FAILED

waitForJobCo
mpletedOrFaile
d

None Callback will
be called after
the Job status
has reached
complete or
failed

ACTIVITY_
COMPLETE if
the job
completed
successfully.
ACTIVITY_
FAILED if the job
failed.

ACTIVITY_FAILED

Restart
Scenarios

startOrRestartJ
obActivity

None Job will be
started or
restarted only
if the Job was
not started
earlier or job
failed. If the
activity failed
due to
callback
failure the job
will not be
started.

ACTIVITY_
COMPLETE if
the job was
started or
restarted
successfully.
ACTIVITY_
FAILED if the job
was not started
or restarted
successfully.

ACTIVITY_FAILED

Activity Type
Activity Action
(Skip or Hold)

Callback
behaviour (if
callback
enabled)

Activity Status
sent by Callback

Activity Status if
Callback fails

Process Flow

Process Flow 5-25

Process Execution Trace
The Process Flow engine keeps track of process execution details in the BDI_
PROCESS_CALL_STACK_TRACE table. In order for a sub-process to appear in the
trace, the sub-process must be called with the api as shown below.

triggerProcess(<Base URL>, <Sub Process Name>, <credentials>, <Process Parameter
Map>)

Example:

triggerProcess("http://host:port/bdi-process-flow", "DiffGrp_Fnd_ProcessFlow_From_
RMS", "userid:password", null)

REST end point to get process execution trace
http://<host>:<port>/bdi-process-flow/resources/telemetry/processes/execution-tr
ace/{ProcessExectionId}

Sample Output:

{
"executionId": "Diff_Fnd_ProcessFlow_From_

RMS~8e1c7c11-1302-409d-9102-c55fffbdc1ab",
"executionName": "Diff_Fnd_ProcessFlow_From_RMS",
"activityExecutionId": "",
"url": "",
"status": "PROCESS_COMPLETED",
"duration": 0,
"type": "PROCESS",
"invocationTime": "2017-07-19T12:21:20.061-06:00",
"children": [

{
"executionId": "ItemImage_Fnd_ProcessFlow_From_

RMS~89f46519-50ab-4a51-a6fb-c6c5395afeca",
"executionName": "ItemImage_Fnd_ProcessFlow_From_RMS",
"activityExecutionId": "Activity2~a408b407-c4f0-4137-ba32-6ddd148f0838",
"url":

"http:\/\/msp8917:8001\/bdi-process-flow\/resources\/batch\/processes\/operator\/I
temImage_Fnd_ProcessFlow_From_RMS",

"type": "PROCESS",
"invocationTime": "2017-07-19T12:21:20.534-06:00",
"children": [

waitForJobCo
mpletedOrFaile
d

None Callback will
be called after
checking the
Job status, if it
has reached
complete or
failed,
otherwise
process will
wait for the
job to reach
complete or
failed status.

ACTIVITY_
COMPLETE if
the job
completed
successfully.
ACTIVITY_
FAILED if the job
failed.

ACTIVITY_FAILED

Activity Type
Activity Action
(Skip or Hold)

Callback
behaviour (if
callback
enabled)

Activity Status
sent by Callback

Activity Status if
Callback fails

Process Flow

5-26 Oracle Retail Integration Bus Implementation Guide

]
},
{

"executionId": "DiffGrp_Fnd_ProcessFlow_From_
RMS~bb68a1ea-86a5-4108-aa58-b9e791d1fb8c",

"executionName": "DiffGrp_Fnd_ProcessFlow_From_RMS",
"activityExecutionId": "Activity1~602ad027-7946-4820-acd8-cf452f5fc937",
"url":

"http://host:port/bdi-process-flow/resources/batch/processes/operator/DiffGrp_Fnd_
ProcessFlow_From_RMS",

"type": "PROCESS",
"invocationTime": "2017-07-19T12:21:20.296-06:00",
"children": [

{
"executionId": "ItemHdr_Fnd_ProcessFlow_From_

RMS~3886b39f-6268-4895-8e5e-300ded42665b",
"executionName": "ItemHdr_Fnd_ProcessFlow_From_RMS",
"activityExecutionId": "Activity2~8e9f9a6a-440a-41dd-a648-f4322102012b",
"url":

"http://host:port/bdi-process-flow/resources/batch/processes/operator/ItemHdr_Fnd_
ProcessFlow_From_RMS",

"type": "PROCESS",
"invocationTime": "2017-07-19T12:21:20.705-06:00",
"children": [

]
},
{

"executionId": "InvAvailWh_Tx_ProcessFlow_From_
RMS~6c462406-a991-4754-9d94-73628091114a",

"executionName": "InvAvailWh_Tx_ProcessFlow_From_RMS",
"activityExecutionId": "Activity1~e7f8e9fa-7ba6-4a51-81e2-bdcfe752c15e",
"url":

"http://host:port/bdi-process-flow/resources/batch/processes/operator/InvAvailWh_
Tx_ProcessFlow_From_RMS",

"type": "PROCESS",
"invocationTime": "2017-07-19T12:21:20.538-06:00",
"children": [
]

}
]

}
]

}

Process Metrics Service
Process Metrics provides an end point to produce metrics for processes that ran
between "fromTime" and "toTime".

Path: /telemetry/processes

HTTP Method: GET

Parameters:

fromTime - Query parameter

toTime - Query parameter

Sample Response:

Process Flow

Process Flow 5-27

<process-runtime-monitoring-info>
<data-requested-at>2017-10-09T10:24:27.848-06:00</data-requested-at>
<data-requested-from-time>2017-03-01T00:00:00-06:00</data-requested-from-time>
<data-requested-to-time>2017-08-01T00:00:00-06:00</data-requested-to-time>
<process-server-runtime-info>

<id>bdi-process</id>
<app-status>RUNNING</app-status>
<up-since>2017-10-09T10:22:34.498-06:00</up-since>
<total-executions-count>16</total-executions-count>
<successful-executions-count>8</successful-executions-count>
<failed-executions-count>7</failed-executions-count>
<process>

<name>DiffGrp_Fnd_ProcessFlow_From_RMS</name>
<slowest-run-duration>0.0</slowest-run-duration>
<fastest-run-duration>120.0</fastest-run-duration>
<avg-run-duration>60.2315</avg-run-duration>
<executions>

<exceution-count>1</exceution-count>
<success-count>0</success-count>
<failure-count>1</failure-count>
<execution>

<execution-id>
DiffGrp_Fnd_ProcessFlow_From_RMS~650dba75-b632-42ea-963b-802c560d0c6b
</execution-id>

<status>PROCESS_FAILED</status>
<start-time>2017-05-17T14:39:32.489-06:00</start-time>
<end-time>2017-05-17T14:39:33.535-06:00</end-time>
<activity-exe>

<activity-exe-id>begin~2ac2bc4d-6233-41ac-a134-5fb73ebba275</activity-exe-id>
<name>begin</name>
<duration>0.0</duration>
<status>ACTIVITY_COMPLETED</status>

</activity-exe>
<activity-exe>

<activity-exe-id>
DiffGrp_Fnd_ExtractorActivity~035b6e78-411e-4868-b441-f2e79a3dba61
</activity-exe-id>

<name>DiffGrp_Fnd_ExtractorActivity</name>
<duration>0.0</duration>
<status>ACTIVITY_SKIPPED</status>

</activity-exe>
<activity-exe>

<activity-exe-id>
DiffGrp_Fnd_ExtractorStatusActivity~7d92a1c1-721a-416d-86ac-c412f9e49982
</activity-exe-id>

<name>DiffGrp_Fnd_ExtractorStatusActivity</name>
<duration>0.0</duration>
<status>ACTIVITY_SKIPPED</status>

</activity-exe>
<activity-exe>

<activity-exe-id>
DiffGrp_Fnd_GetDataSetIdActivity~423d19e3-8c9d-44b2-93b9-183f41cd0840
</activity-exe-id>

<name>DiffGrp_Fnd_GetDataSetIdActivity</name>
<duration>0.0</duration>
<status>ACTIVITY_SKIPPED</status>

</activity-exe>
<activity-exe>

<activity-exe-id>

Customizing Process Flows

5-28 Oracle Retail Integration Bus Implementation Guide

DiffGrp_Fnd_DownloaderAndTransporterActivity~70bac2cb-c414-4be8-a5ab-0ef21fd2fc4d
</activity-exe-id>

<name>DiffGrp_Fnd_DownloaderAndTransporterActivity</name>
<duration>0.0</duration>
<status>ACTIVITY_FAILED</status>

</activity-exe>
<activity-exe>

<activity-exe-id>end~5c07a938-864b-4156-bab7-70b96bcb2d74</activity-exe-id>
<name>end</name>
<duration>0.0</duration>
<status>ACTIVITY_FAILED</status>

</activity-exe>
</execution>

</executions>
</process>

</process-server-runtime-info>
</process-runtime-monitoring-info>

Process Security
The Process Flow Application uses basic authentication to access the system. The user
must belong to the BdiProcessAdminGroup or BdiProcessOperatorGroup or
BdiProcessMonitorGroup to use the process flow REST services and process flow
admin application.

There are three authorization roles designed for process flow application; Admin Role,
Operator Role and Monitor Role. The Admin role has permissions to use all the
functions provided by the process flow application. The Operator Role has limited
access compared to Admin. The Monitor role has the least access permissions from all
roles, as identified in the table below.

Customizing Process Flows
This section describes the customizing process flows.

Process Flow DSL
The Process Flow is written in a custom DSL for process. This DSL allows a limited set
of keywords to define a process. These keywords are identified in the table below. The
execution section (Action keyword) can be written in Groovy or Java, since the DSL is
developed on the top of Groovy.

Service/Action Monitor Role Operator Role Admin Role

Update Process DSL No No Yes

Start/Restart Process No Yes Yes

All other services Yes Yes Yes

Skip/Hold/Release No Yes Yes

Keyword Description

process Identifies the process flow. Only one keyword in a process flow.

name Used for naming processes and activities

Sub Processes

Process Flow 5-29

APIs
The process flow engine also provides a few APIs specific to BDI batch jobs. The DSL
writers can use these in the activity section of the script.

How to modify a Process Flow
A process flow can be modified at deployment time. At deployment through the
Process Flow Admin app the flow files that come with the application are in the
setup-files/dsl/available_process_flow_options folder. These files have an extension
".flo". The user can edit these files in any text editor.

After editing the file save the file to the setup-files/dsl/flows-in-scope folder. The
deployment script will take the process flow file and save in the process flow schema.

After deployment, the process flow can be edited by the Admin user through the
Process Flow Admin application. The changes will be picked up at the next run.

It is recommended to make any permanent changes at deployment time, since the
change through the Admin App may get overwritten at redeployment.

Sub Processes
In multi-destination process flows, one process may invoke one or more processes
asynchronously. All the processes may run at the same time.

In order to identify these subprocesses they are named accordingly. Once invoked, the
main process has no control over the sub processes. Each of the process will run in the
same way as they are invoked independently.

Process Schema
The process instrumentation captures the state of the process at the beginning and end
of each activity. This information is persisted into the process schema. For each activity

var Used for initializing process variables

begin A special activity that occurs at the beginning of the process
execution. Only one begin activity per process flow

action The main executable section of the Activity. The body of Action
can be in Groovy or Java

on "okay" moveTo .. Jump to a specific activity on matching the condition.

on "error" moveTo .. Use these keywords inside an activity to move to error activity.

activity The executable component of the process flow. A process flow is
composed of many activities.

end A special activity that occurs at the end of the process
execution. Only one begin activity per process flow

Note: For security reasons, usage of certain keywords are not
allowed in the Process Flow DSL. When defining the process action in
the process flow UI, any such forbidden keywords if used will prevent
the process from being created or updated. A process cannot be saved
or run if such keyword is present in the process action definition.

Keyword Description

Sub Processes

5-30 Oracle Retail Integration Bus Implementation Guide

there will be two records, one for before activity and the other for after activity. The
schema details are in the Appendix B.

Process Customization

Seed Data
During the deployment of Process Flow, seed data gets loaded. Seed data files are
located in "job-process-home/setup-data/dml" folder. If seed data is changed, Process
Flow needs to be reinstalled and redeployed. For loading seed data during
redeployment, LOADSEEDDATA flag in BDI_SYSTEM_OPTIONS need to be set to
TRUE.

Process DSL Reload
Along with seed data, the process DSL also gets loaded to BDI_PROCESS_
DEFINITION table during the deployment time. Process DSLs are located in
"jos-process-home/setup-data/dsl/flows-in-scope" folder. If you want to load DSLs
again after DSLs are added or update, Process Flow needs to be redeployed. For
loading DSLs during the redeployment, LOADPROCESSDEF flag in BDI_SYSTEM_
OPTIONS table need to be set to TRUE.

Deployment of Process Flow first time loads both seed data and process DSLs.

Redeployment loads seed data depending on the LOADSEEDDATA and
LOADPROCESSDEF flag values.

Redeployment scenarios

Table Name Description

BDI_PROCESS_DEFINITION This table stores all the process flow definitions. It is
loaded at deployment time.

BDI_PROCESS_EXEC_INSTANCE This table tracks all the process flow executions. There
is a row for each process flow execution.

BDI_ACTIVITY_EXEC_
INSTANCE

This table tracks all the activity executions. There are
2 rows for each activity execution. One to store the
before context and one to store after context

BDI_ACTIVITY_DYNAMIC_
CONFIG

This table stores the user runtime choices like SKIP,
HOLD etc at activity level

BDI_SYSTEM_OPTIONS This table has all the system level information like
URLs, credential aliases etc.

BDI_EMAIL_NOTIFICATION This table persist records for email notifications sent

BDI_EXTERNAL_VARIABLE This table does temporary storage of variables during
process execution.

BDI_PROCESS_CALL_STACK This table stores call stack for processes

LOADSEEDDATA LOADPROCESSDEF Behavior

TRUE TRUE Loads both seed data and
process DSLs

TRUE FALSE Loads seed data only

FALSE TRUE Loads process DSLs only

FALSE FALSE Does not load seed data and
process DSLs

Sub Processes

Process Flow 5-31

REST Interface
Process Flow services are exposed as REST endpoints for the use of other applications.
The list of REST endpoints are given in the Appendix C

Troubleshooting
Since the process flow can be written in Groovy and DSL, it is prone to programmer's
mistakes. Any custom DSL must be properly tested before deploying. At present, the
process flow engine can detect syntax errors only at runtime. So it is possible to load
an incorrect process flow and fail during runtime.

At the end of an activity, the process engine invokes the next activity depending on the
result of activity execution (The "moveTo" statement). If you have empty activities
(possibly because you commented out the existing invocation statements), make sure
the activity result is valid (for example, "okay")

If any activity fails, the process is marked as failed. So in case of process failure, look at
the activity details to find out which activity failed. Once the failed activity is
identified, the process variables can be inspected to look for any issues. Next step
would be to look at the logs, through the Process Flow Monitor application to see the
details of the issue. Once the issue is fixed, either restart or a new run of the process
flow can be used depending on the requirement.

BDI Process flow runtime XML UnmarshallException
Error

BDI Process Flow fails and GUI is showing this exception:

Runtime Process Flow exception

[Thread-55] ERROR Logger$error$0 - Error calling activity.
javax.ws.rs.ProcessingException: Unable to unmarshall json
object to java object.

OR

Caused by: javax.xml.bind.UnmarshalException - with linked
exception:

[Exception [EclipseLink-25004] (Eclipse Persistence Services -
2.6.1.v20150916-55dc7c3):
org.eclipse.persistence.exceptions.XMLMarshalException.

Exception Description: An error occurred unmarshalling the
document

Internal Exception: javax.json.stream.JsonParsingException:
Unexpected char 73 at (line no=1, column no=1, offset=0)]

Reason

Process flow deployed with wrong credentials for apps.

Solution

Delete existing process flow deployment from weblogic domain. Redeploy process
flow with setting up new credentials.

BDI Process flow stuck in running state
Issue:

Sub Processes

5-32 Oracle Retail Integration Bus Implementation Guide

BDI Process Flow keeps in running status and does not end with failed or completed
state. This even does not allow to cancel an existing running process or start a new
process.

Reason:

This happens because of default JTA Timeout in domain configuration, and resource
connections not able to timeout. There are instructions in BDI installation guide "How
to Set JTA Timeout".

Resolution:

Follow the instructions in the BDI Implementation guide and set JTA timeout.
Redeploy the processflow app to stop the running flow and rebounce the server.

Process FlowDidNot Start
To address this, verify the logs. It could be due to the missing Credentials Access
permission, missing system credentials, or a missing system options or DSL parsing
error.

Deleted process flow still listed in the UI
Deleting a process flow from bdi-process-home doesn't deletes it from the process flow
application, because the process flow application refers the database entries, so in
order to delete a process flow from BDI Process Flow app, the script DELETE_
PROCESS_FLOW.sql(bdi-process-home/setup-data/dml/) has to be run in BDI
ProcesFlowAdminDataSource Schema.

Best Practices for Process Flow DSL
■ Use naming conventions for process flows and activities in process flow so that

they are easily identified. It is recommended that name of the process flow
includes “Process” and the name of activities ends with “Activity”.

■ Use built in “startOrRestartJob” method to start/restart job in Job Admin.

Use built in “waitForJobCompletedOrFailed” method to wait until job is complete
or failed.

■ Access system options through “externalVariables”.

■ Use “processVariables” to share variables between activities.

■ Use built in “waitForProcessInstancesToReachStatus” to wait for other process
instances.

■ Use built in “waitForProcessNamesToReachStatus” to wait for other processes.

■ Use the built-in triggerProcess to start a sub process.

■ It is recommended to use “flo” as extension for process flow DSL file.

Use the built-in REST DSL to make rest calls.

■ Organize process flows as hierarchical parent child flows where parent manages
the child flows. Avoid using too many waitFor calls as active threads are getting
blocked.

6

BDI Scheduler 6-1

6 BDI Scheduler

The Scheduler application in the Bulk Data Integration (BDI) product suite assists in
scheduling of batch processes to run at predefined configured intervals of times. A
schedule determines when a job or a process or any program needs to be executed and
the frequency of execution.

The Scheduler application runtime is based on the container-managed Java EE timer
service to execute the schedules and utilizes the Oracle WebLogic Server's
implementation and management of the timer service when deployed on the
WebLogic server.

The Scheduler supports various schedules ranging from simple interval schedules
such as hourly, daily, and so on, to advanced cron-like scheduling.

Scheduler currently supports calling of REST services. The application out-of-the-box
contains schedules to run BDI Process Flows in scope for this release.

The Scheduler Console (Admin UI) enables runtime monitoring and administration of
schedules where the user can view, create, edit, delete schedules, manually run a
schedule, enable/disable schedule, set up notifications for schedules and so on.

Scheduler Core Concepts
This section describes the scheduler core concepts.

Schedule Definition

A schedule definition comprises details of a schedule such as Schedule Name, and
Schedule Group which indicates logical or functional grouping of schedules, and
Schedule Description.

Schedule Execution

A schedule execution is an instance of scheduled run of a schedule at the specified
frequency.

Schedule Types
A schedule can be an interval-based schedule or calendar-based schedule.

Interval Schedules
An interval-based schedule is a schedule that repeats at fixed interval of time starting
from a specific time. For example, hourly, daily, weekly, every 5 minutes and so on.

Scheduler Core Concepts

6-2 Oracle Retail Bulk Data Integration Implementation Guide

Calendar Schedules
A calendar-based schedule is a cron-type of schedule that specifies different times that
the schedule runs. More complex schedules that can be specified as cron expression
are defined as calendar-based schedules.

The following parameters define a calendar-based schedule, same as the parameters in
a cron expression: Minutes, Hours, Day of Week, Day of Month and Month.

Scheduling Mechanisms
This section describes the scheduling mechanisms.

Simple Scheduling
Simple schedules are predefined schedule frequencies that are available as options for
the user to choose readily. The following are the simple schedules that the Scheduler
supports.

■ Hourly

■ Daily

■ Weekly

■ Monthly

■ Weekday (Monday-Friday)

■ Weekend (Saturday-Sunday)

■ Saturday

■ Sunday

■ First day of every month

■ Last day of every month

■ One time only (run once), and

■ User-specified frequency with interval in the units of:

minutes, hours, days or weeks

Advanced Scheduling
BDI Scheduler supports advanced scheduling which is cron-like scheduling.
Calendar-based schedules that can be expressed in cron-format can be setup with the
advanced scheduling capability of the Scheduler. Advanced scheduling is defined
with the following parameters (similar to that of cron expression) and the
corresponding range of values:

■ Minutes : 0-59

■ Hours : 0-23 (12:00 a.m. - 11:00 p.m.)

■ Day of Week : Monday - Sunday

■ Day of Month : 1-31

■ Month : 1-12 (January - December)

Note: The Scheduler does not currently support Seconds and Year
parameters in a calendar schedule.

Scheduler Core Concepts

BDI Scheduler 6-3

If a schedule is created with multiple values for the above parameters, then the
schedule will repeat at all those specified times.

Schedule Frequency
The schedule frequency defines the frequency at which a schedule has to be repeated
at the configured time and interval starting from a given point of time. The schedule
frequency has the following parameters that determines when the schedule has to be
run.

Schedule Start Datetime
It specifies the start date and time when a particular schedule has to start executing.

For interval based schedules, this is the first time the schedule runs and then repeats
based on the specified interval.

For example, a schedule with start datetime as 2016-08-15 10:00a.m. and repeat 'Daily'
will first run at 2016-08-15 10:00 a.m. and next run at 2016-08-16 10:00 a.m. and so on.

For calendar schedules (cron schedules), this defines the time from when the schedule
will become effective and starts executing based on the frequency. So it is not
necessarily the first run of the schedule, though it very well may be.

For example, a schedule with start datetime as 2016-08-15 10:00 a.m. (which is a
Monday) but repeat every Thursday, will first run at 2016-08-18 10:00 a.m. (Thursday)
and subsequently next run at 2016-08-25 10:00 a.m. (Thursday) and so on.

So the Start Datetime here signifies the datetime the schedule becomes effective and
that it will not run before that datetime. However, here the Start Datetime can very
well be specified as 2016-08-18 10:00 a.m. (Thursday) and repeat every Thursday.

So in summary, for interval-based schedules, first run of the Schedule equals Schedule
Start Datetime. For calendar-based schedules, first run of the Schedule may or may not
be equal to the Schedule Start Datetime, based on the schedule recurrence specified.

Schedule End Datetime
It specifies an end date and time when the schedule should stop executing and no
longer run. When a schedule has no end datetime specified, it runs indefinitely.

For example, say, Schedule Start Datetime: 2016-08-15 10:00 a.m., repeat 'Hourly',
Schedule End Datetime: 2016-08-15 11:00 a.m., then the schedule will run at 10:00 a.m.
and also at 11:00 a.m. before ceasing to run.

Recurrence / Repeat Interval
This specifies the frequency at which the schedule repeats. This is same as described in
Simple and Advanced Scheduling.

Schedule Next Run Datetime
This indicates the date and time of the next occurrence of the schedule, obtained based
on the configured schedule frequency.

Note: The end datetime is inclusive for the schedule execution,
meaning if the schedule recurrence coincides with the end datetime,
the schedule will execute at the end datetime and only then does not
repeat.

Scheduler Core Concepts

6-4 Oracle Retail Bulk Data Integration Implementation Guide

Schedule Timezone
All the date and times in the Scheduler are based on the timezone of the server (JVM)
where the application is deployed.

The Scheduler Console (UI) displays the server's current date and time with timezone
(the current time displayed gets refreshed when the UI is refreshed).

Schedule Action
The Schedule Action defines what is executed when the schedule runs at the specified
frequency. It is a DSL (domain specific language) that is based on Groovy. The
schedule action has a simple syntax as follows.

action {
//Define what needs to be executed here. Say invoke a REST service.
}
Currently Schedule Action supports calling REST services. BDI process flows are
called by the Scheduler as REST services.

For example, to trigger a BDI process flow named Store_Fnd_ProcessFlow_From_
RMS, the following schedule action is defined:

action {

(POST[externalVariables.processFlowAdminBaseUrl +
"/resources/batch/processes/operator/Store_Fnd_ProcessFlow_From_
RMS"]^externalVariables.processFlowAdminBaseUrlUserAlias) as String

}
■ POST denotes the REST method.

■ processFlowAdminBaseUrl is an entry key in 'externalVariables' map variable
used by the Scheduler runtime and specifies the BDI Process Flow Admin's base
URL. The value for processFlowAdminBaseUrl is specified during install time and
gets stored in the BDI System Options. The value of processFlowAdminBaseUrl
will be like https://<host>:<port>/bdi-process-flow.

– For example, https://example.com:8001/bdi-process-flow

– The value for processFlowAdminBaseUrl is specified during install time and
gets stored in the BDI System Options.

■ /resources/batch/processes/operator/Store_Fnd_ProcessFlow_From_RMS is the
relative REST URL to call the process flow.

– It is of the form /resources/batch/processes/operator/<process flow name>.

■ processFlowAdminBaseUrlUserAlias is an entry key in 'externalVariables' map
variable used by the Scheduler runtime and specifies the alias name for BDI
Process Flow Admin's user credentials to access the process flow REST service.

– The value for processFlowAdminBaseUrlUserAlias is specified during install
time and gets stored in the BDI System Options.

Note: When creating or updating a schedule and in monitoring
schedule executions in the Scheduler Console, the date and time are as
per the timezone setup in the application server and not the local
timezone.

Scheduler Core Concepts

BDI Scheduler 6-5

Basic authentication is used to access the BDI process flows. The Scheduler uses
processFlowAdminBaseUrlUserAlias to lookup the credentials in the runtime secure
wallet where the credentials specified at install-time are stored.

Scheduler by itself does not manage executions of process flows called from within the
schedule action and any dependencies associated thereof. The Scheduler only triggers
process flows. The execution of process flows is done by the Process Flow engine.

For any dependencies between execution of process flows to be managed, it is
recommended that such dependencies are defined in the BDI Process Flow Admin and
not in the Schedule Action. For example, if process-flow-2 needs to be run after
process-flow-1 completes, use Process Flow Admin to define this dependency and not
in the Schedule Action.

It is recommended to avoid time based dependency management in execution of
process flows from within the Scheduler, but rather use Process Flow Admin to
coordinate such dependency execution requirements.

Schedule Action Type
There are two types of Schedule Action - Sync and Async. When creating a schedule
and defining a schedule action, the user needs to specify whether the schedule action
is sync or async. The Scheduler determines the action execution statuses according to
the action type specified.

Sync Action
Executes synchronously and returns a result after its successful or failed completion
(however long the action may run).

Async Action
The action is asynchronous and returns a response immediately when triggered, but
will continue to execute. The actual process completes at a later time. The end result of
the action is not known to Scheduler in this case.

Schedule Action Execution Status
Indicates the status of execution of the schedule action when the schedule has run at
the configured frequency of time.

A schedule execution can be in one of the following statuses depending upon the
Schedule Action Type and its execution.

■ Triggered (applicable only for ‘Async’ action)

■ Started (applicable only for ‘Sync’ action)

■ Failed (applicable for both ‘Async’ and ‘Sync’ actions)

Note: For security reasons, usage of certain keywords are not
allowed in the Schedule Action DSL. When defining the schedule
action in the Scheduler UI, any such forbidden keywords if used will
prevent the schedule from being created or updated. A schedule
cannot be run if such keywords are present in the schedule action
definition.

Scheduler Runtime

6-6 Oracle Retail Bulk Data Integration Implementation Guide

Schedule Action Type and Execution Status
The Schedule action type determines the schedule action status during the execution
lifecycle.

Sync Action Execution Statuses

Executes synchronously and returns a result after it’s successful or failed completion
(however long the action may run).

■ When sync action starts, the Schedule Action status will marked 'STARTED'.

■ When the action completes and returns a successful result, the status will be
marked 'COMPLETED'.

■ When the action does not complete because of an exception or returns a failed
response (return value = "FAILED"), then the status will be marked 'FAILED'.

Async Action Execution Statuses

The schedule action status will only be 'TRIGGERED' when the Scheduler successfully
invokes the schedule action.

In case there is an exception in invoking the action itself, then the status is 'FAILED'.

By default, all BDI process flows are asynchronous that return an execution Id when
triggered, but continue to run to invoke the batch jobs that complete at a later time.

How the Action Execution Statuses are determined

■ The Scheduler marks the Action Execution Status as 'FAILED' when there is an
exception in executing the action or when an exception is thrown from the
schedule action. In order for the Scheduler to mark the execution of the schedule
action as 'FAILED' when the action has been executed, the action should either
throw an exception or return a value as 'FAILED'.

■ If the schedule action returns null or any other return value, the action execution
status will be be marked 'TRIGGERED' for async action and 'COMPLETED' for
sync action and the returned response is stored as such in the Schedule Action
Execution Log.

Schedule Status

A schedule can be in one of the following statuses:

■ Active: An Active schedule indicates that the schedule is running at the specified
frequency.

■ Inactive: An Inactive schedule indicates that the schedule has reached its end
datetime and no longer runs.

■ Disabled: A Disabled schedule indicates that the user has disabled the schedule to
not run at its specified frequency.

Scheduler Runtime
This section describes the scheduler runtime.

Scheduler Startup

Scheduler Runtime

BDI Scheduler 6-7

As the Scheduler is deployed and the application starts up, the Scheduler service
performs the following actions:

■ Loads the schedules defined in the seed data sql script in the installer. This means
schedule definitions are inserted in the corresponding Scheduler infrastructure
table.

■ Loads the schedule action dsl for each corresponding schedule from the *_
Action.sch files in the installer. Each schedule definition in the table is updated to
include its corresponding schedule action.

■ The Scheduler service sets up the default runtime timers for each schedule.

When the application is deployed first-time, all schedules will be setup new. However,
when the application is redeployed or the application server is restarted, the schedule
timers that are already created and exist, will not be recreated.

All seed data schedules need to be specified with status as 'Active'. This ensures that
the schedule timers are created at startup and the schedules start to run as per the
frequency defined.

When a schedule action dsl contains any restricted keyword, the schedule will be
'Disabled' at startup and will not run. The User has to correct the schedule action
definition from the Scheduler UI and enable the schedule to make it active.

Schedule Runtime Execution
The Scheduler uses the application server's implementation of Java EE compliant timer
service to execute the schedules at runtime. When a schedule is created, Scheduler sets
up a timer in the application server based on the schedule frequency configured. At
each scheduled time, the application server invokes a callback method where the
Scheduler will execute the schedule action.

Each schedule timer executes in a separate thread, so schedule executions do not block
each other. Each schedule execution itself is run synchronously in its own thread, that
is, the execution is blocked until it completes. But the schedule action can be specified
to be asynchronous (Async action) or synchronous (Sync action) based on the action
dsl defined for the schedule.

It is appropriate to specify a schedule action as 'async' when all the service calls made
within the schedule action are non-blocking asynchronous calls and the action defined
runs in different thread from that of the Scheduler.

If any of the service calls within the schedule action is a blocking synchronous call and
the action is not defined to run in a separate thread, then the action type should be
'sync'.

Specifying the schedule action type 'async' or 'sync' based on the action dsl definition
determines the runtime execution behavior and statuses of the schedule execution.
This is explained below.

Schedule Execution - BDI Process Flows
BDI process flow invocations (REST service calls) are asynchronous by default and the
corresponding schedule actions are specified 'Async'.

Scheduler Runtime

6-8 Oracle Retail Bulk Data Integration Implementation Guide

Figure 6–1 Schedule Execution - BDI Process Flow

The Process Flow does not block the calling thread (that is, the Scheduler) and returns
immediately. The Process flow returns an Execution ID of the process execution
instance as a future handle, but will continue to execute the activities defined in the
DSL. The activities in BDI process flows may run for longer duration. Here, the
Scheduler simply acts as a trigger for the process flows at the scheduled frequency of
execution.

The actual status of the process flow instance may be completed or failed after its
execution, but the status of schedule execution in Scheduler will remain 'TRIGGERED'.
The execution of the process flow and the eventual status thereof will not be known to
the Scheduler.

Schedule Execution - Async Action

Figure 6–2 Schedule Execution - Async Action

When the schedule action execution starts for async action, the action execution status
is set to 'TRIGGERED', and the action is executed. As the action type is specified
'Async', the action should be non blocking, either returning a response immediately or
not returning a response and continuing execution, but runs in a separate thread
returning the control immediately.

The execution of the action and the eventual status thereof will not be known to the
Scheduler. Once the control is returned, the schedule action execution ends but the
status remains 'TRIGGERED'. In case of an exception when the action is triggered, the
status is set to 'FAILED' and the execution ends.

Scheduler Runtime

BDI Scheduler 6-9

Schedule Execution - Sync Action

Figure 6–3 Schedule Execution - Sync Action

When the schedule action execution is started for 'sync' action, the action execution
status is set to 'STARTED'. As the action type is specified 'sync', the action is blocking
and runs in the same thread as the schedule execution.

The schedule execution ends only when the action completes returning a response or
throws an exception, thereby releasing the execution thread.

After the schedule action completes successfully, the status is set to 'COMPLETED'.
But if the action return value is 'FAILED' or the action returns throwing an exception,
the status is set to 'FAILED'.

For sync actions, the action execution status in Scheduler can indicate the actual
execution status (either completed or failed) of the process that was executed.

Scheduler Runtime

6-10 Oracle Retail Bulk Data Integration Implementation Guide

Schedule Execution Failover
All schedule timers created by the Scheduler are persistent. This enables a failover
feature that in case of unexpected server shutdown or downtime, the missed schedules
will be run once the server is back up. That is, the schedules that should have been run
during the downtime, will be run as soon as the server is back up and the application
is in running state.

Schedule Notification
The Scheduler supports email notification of scheduled runs at runtime. The available
options of events for notifications on a scheduled run are:

■ Notify when the schedule action execution begins

– This occurs when the schedule action execution is 'Started' for sync action and
before triggering of action execution for async action.

■ Notify when the schedule action execution ends successfully

– This occurs when the schedule action execution status is 'Triggered' for async
actions and 'Completed' for sync actions.

■ Notify when the schedule action execution fails

– This occurs when the status of schedule action execution is 'Failed', when one
of the following occurs: An exception is caught in the Scheduler service itself,
when an exception is thrown by the schedule action dsl, when the schedule
action dsl returns the string 'FAILED'.

Persisting Schedule Notifications
All schedule notifications are persisted to the BDI_EMAIL_NOTIFICATION table.
There is a subtab Schedule Notifications added in Manage Configurations tab which
displays all the notifications.

One notification icon appears right top corner of the screen adjacent to the user if there
is any notification in PENDING status. User will be navigated to the Schedule
Notifications subtab by clicking on the image.

User can modify the status to COMPLETED after going through the notification and
click on save button so that next time it doesn't appear on the screen.

Note: A missed schedule will be run only once, not as many times as
it was missed during the downtime. For example, if a schedule is
scheduled to run every 5 minutes and the application server is down
for 15 minutes and restarted, the schedule will be run only one time
and not 3 times. This is a feature supported by the Java EE container.

Scheduler REST Services

BDI Scheduler 6-11

Figure 6–4 Persistent Schedule Notificaitons

Scheduler Infrastructure Schema
The Scheduler infrastructure relies on the following schema to store the schedule
definitions and schedule executions.

The Scheduler service captures all schedule executions at runtime and persist the
execution instances in the corresponding infrastructure table.

Scheduler REST Services
Scheduler provides certain RESTful services to retrieve information about schedules
and run the schedule manually.

All the below REST resources can be accessed by Monitor, Operator and Admin role
users, except for the run-schedule-now service that can be accessed by Admin and
Operator role users, but not by users with only the monitor role.

Table Name Description

BDI_SCHEDULE_
DEFINITION

This table contains all the schedule definitions created,
including schedule frequency, schedule notification
information and schedule action dsl for each schedule.

Seed data schedules are loaded in this table at
deployment time during application startup.

BDI_SCHEDULE_
EXECUTION

All schedule executions at runtime are persisted in this
table.

BDI_EMAIL_ NOTIFICATION All schedule email alerts are persisted in this table.

BDI_SYSTEM_OPTIONS This table contains system-level global parameters as
key-value pairs used by the Scheduler at runtime, such
as, Process Flow Admin Base URL, Process Flow Admin
User Alias, which are configured at install time by the
user. User can also add system parameters to be made
available to the schedule actions.

REST Resource Method Description

/resources/discover GET Lists all the available Scheduler REST resources

/batch/schedules GET Returns all the schedules in the application
(including active, inactive and disabled schedules)

batch/schedules/{sche
duleName}

GET Returns the schedule definition of the specified
schedule

Scheduler Console

6-12 Oracle Retail Bulk Data Integration Implementation Guide

Scheduler Console
The Scheduler Console (Admin UI) is a web user interface provided by the Scheduler
where users can monitor and manage schedules, including creating, updating,
deleting, disabling or enabling schedules, manually running schedules, viewing
schedule executions and schedule logs.

The following describes various functions available in Scheduler Console in the
current release.

Schedule Summary
This is the home page that provides the overall summary of the scheduler runtime. It
displays the following information.

Schedules and Executions
This displays the total count of:

■ Active Schedules

■ Schedule Executions today

/batch/schedules/upc
oming-schedules/days
/{days}

GET Returns the upcoming schedules from now to next
number of {days} specified

/batch/schedules/upc
oming-schedules

GET Returns the upcoming schedules for the next 1 day
from now

/batch/schedules/exec
utions/{scheduleName}

GET Returns all the historical schedule executions of
the given schedule since the beginning

/batch/schedules/exec
utions/past/days/{day
s}

GET Returns the historical schedule executions of the
given schedule for past number of {days}

/batch/schedules/exec
utions/failed

GET Returns all the failed executions for all the
schedules since the beginning

/batch/schedules/exec
utions/today

GET Returns today's schedule executions starting from
midnight today (12:00 a.m.) to now

/batch/schedules/exec
utions/today/complete
d

GET Returns today's schedule executions that are either
in 'Triggered' status (for async actions) or in
'Completed' status (for sync actions), starting from
midnight today (12:00 a.m.) to now

/batch/schedules/exec
utions/today/failed

GET Returns today's schedule executions that are in
'Failed' status, starting from midnight today (12:00
a.m.) to now

/batch/schedules/oper
ator/run-schedule-now
/{scheduleName}

POST Runs the specified schedule, that is, executes the
Schedule Action of the schedule and returns the
Schedule Execution detail response.

This is synchronous invocation, so client needs to
wait for the response.

Note: It is recommended to use Chrome web browser to access
Scheduler Console since the calendar widget for datetime fields are
supported by Chrome browser and not by Firefox or IE as of now.

REST Resource Method Description

Scheduler Console

BDI Scheduler 6-13

■ Schedule Executions that were successful today

■ Schedule Executions that failed today

Figure 6–5 Schedules and Executions

Upcoming Schedules
Lists the future schedules that are expected to run in the next 24 hours from now.

Figure 6–6 Upcoming Schedules

Schedule Executions Failed Today
Lists the schedule executions that have failed today (from midnight to now).

Figure 6–7 Schedule Executions Failed today

Schedule Executions Completed / Triggered Today
Lists the schedule executions that are completed or triggered today (from midnight to
now). A status of 'Completed' represents sync actions and the status of 'Triggered'
represents async actions.

Schedule Executions In Progress Today
Lists the scheduled executions that were started but have not completed and in
progress today (from midnight to now). This is applicable only for sync actions that
are in a 'Started' status.

Schedules Past Due
Lists the schedules that failed to run at the scheduled time (that is, schedules whose
next run time is before the current time are displayed here). Ideally, there should be no

Note: Today here indicates the duration from midnight to now.

Scheduler Console

6-14 Oracle Retail Bulk Data Integration Implementation Guide

missed schedules unless there may be an internal server issue that the schedule timer
failed to run.

Manage Schedules
The Manage Schedules page displays a list of all schedules and details of each
schedule in the Schedule Detail view and corresponding schedule executions in the
Schedule Executions view for the schedule.

The schedules list provides options to filter schedules based on the Schedule Name,
Schedule Group, Schedule Status, Schedule Frequency. There is also an option to filter
upcoming schedules based on date range.

The 'Create Schedule' function will be available in this page for admin users.

Figure 6–8 Manage Schedules

Creating Schedule
The 'Create Schedule' option displays one page where the user can enter and save all
required information to create a schedule. The page displays input fields under four
sections as follows.

Figure 6–9 Creating Schedule

Basic Info

Schedule Name, Schedule Group and Schedule Description are entered under Basic
Info. Schedule Name and Schedule Group are required fields.

Scheduler Console

BDI Scheduler 6-15

Schedule Name must be unique. The User can choose an existing Schedule Group or
add a new group name for the schedule.

There is limitation for the number of characters that these fields can accept.

Schedule Action

Specify a valid schedule action definition here that will get executed when the
schedule runs.

If any restricted keyword is present in the action definition, the schedule cannot be
saved, and when saving the schedule an error highlighting the restricted keyword will
be displayed.

Also choose here whether the schedule action is 'Async' (which is the default selected
option) or 'Sync'.

Figure 6–10 Schedule Action

Schedule Frequency

It consists of Schedule Start Datetime, End Datetime and Schedule Recurrence.

The Schedule End Datetime is 'Never' by default meaning the schedule never ends and
repeats indefinitely. If the schedule has an end datetime, the user can enter a specific
datetime.

The Start Datetime defaults to 5 minutes from the current time and the End Datetime
defaults to 6 minutes from the current time when chosen.

The Start and End datetimes should be future dates. The Schedule End datetime if
specified should be after the scheduled start datetime. These validations will be done
when saving the schedule.

Scheduler provides two options to specify recurrence of the schedule - Simple
Scheduling and Advanced Scheduling. Use the options tab to toggle between Simple
and Advanced Scheduling options.

Simple Scheduling provides the following predefined schedules that the user can
choose from a drop-down list.

■ Hourly

■ Daily (selected by default)

■ Weekly

Note: The schedule action is not validated or compiled for syntax
when creating the schedule, so any syntax or programming error in
the action definition will result in an exception at runtime and the
schedule execution will fail.

Scheduler Console

6-16 Oracle Retail Bulk Data Integration Implementation Guide

■ Monthly

■ Every Weekday [Mon-Friday]

■ On Weekends [Sat-Sunday]

■ Every Saturday

■ Every Sunday

■ First day of every month

■ Last day of every month

■ One time only

■ Specify a different frequency

The User can use this option to specify a recurring interval in minutes, hours, days or
weeks, for example, 30 minutes, 2 hours, 3 days, and so on.

Advanced Scheduling enables the user to specify complex schedules similar to a cron
expression. The User can choose multiple values for Hours, Minutes, Day of Week,
Day of Month and Month options using the multi-select lists.

The default schedule frequency here is daily midnight (Hours: 12 a.m., Minutes: 0 are
the values selected by default).

Figure 6–11 Schedule Frequency

Schedule Notification

Use the schedule notification option to enable email notification for the schedule when
schedule execution starts or fails or is completed.

Enter valid email addresses for notification. When enabled, email alerts will be sent
based on the options selected.

Starts:

When this option is chosen, email will be sent when the schedule execution starts, that
is, when the schedule runs at the scheduled interval, and just before the execution of
the schedule action.

Fails:

An Email will be sent when there is an exception in the schedule execution or when
the schedule action throws an exception or returns a 'Failed' response. This means the
schedule action execution will be in 'Failed' status.

Triggered / Completed:

Scheduler Console

BDI Scheduler 6-17

An Email will be sent when the schedule action execution status is 'Triggered' (for
async actions) and 'Completed' (for sync actions). This essentially means the schedule
execution is successful.

Figure 6–12 Schedule Notification

Updating Schedule
A schedule can be updated by selecting the schedule from the Manage Schedules page
and using the Edit option in Schedule Detail view.

The Edit page is the same as that of the Create Schedule page with the schedule
information populated. Update the values as required in the relevant sections as
explained previously for creating the schedule. Only admin users can edit a schedule.

Updating any other details other than schedule frequency will not validate the existing
schedule frequency as the schedule will continue to run at the already defined
frequency and only the other details of the schedule definition will get updated as
modified by the user.

When changing the schedule action definition, it will be verified for any restricted
key-words.

Figure 6–13 Updating Schedule

Note: For schedule notification to work, the mail session needs to
have been configured in the WebLogic server. Refer the BDI
Installation Guide for details on the configuration of the mail session.

Note: The updating schedule frequency will validate schedule start
datetime and end datetime (if specified) similar to when creating a
schedule.

Scheduler Console

6-18 Oracle Retail Bulk Data Integration Implementation Guide

Disabling Schedule
A schedule can be disabled by selecting the schedule from the Mange Schedule page
and using the 'Disable schedule' option in the Schedule Detail view. Only admin and
operator users can disable a schedule.

Disabling a schedule will change the schedule status to 'Disabled' and the schedule
will no longer run at the specified frequency. However the schedule can be manually
run using the 'Run Schedule Now' option.

Figure 6–14 Disabling Schedule

Enabling Schedule
A disabled schedule can be enabled again using the 'Enable schedule' option from the
Schedule Detail view. Only admin and operator users can enable a schedule.

Enabling the schedule will change the status of the schedule to 'Active' and the
schedule will resume running at the specified frequency.

Figure 6–15 Enabling Schedule

Deleting Schedule
A schedule can be deleted using the 'Delete schedule' option in the Schedule Detail
view. Only admin users can delete a schedule.

Note: The Inactive schedule cannot be disabled, as an inactive
schedule has reached its end already and no longer runs.

Scheduler Console

BDI Scheduler 6-19

Figure 6–16 Deleting Schedule

Schedule Manual Run
Any schedule can be manually run using the 'Run Schedule Now' option from the
Schedule Detail view. Inactive and disabled schedules can also be manually run.

This option is provided so that the user can run a schedule on demand when required.
Only admin and operators can access this function.

When the schedule is run manually, the schedule action is submitted for execution in
the backend and the result of the execution can be seen from the Schedule Executions
view.

Figure 6–17 Schedule Manual Run

Schedule Executions
From the Schedule Executions page, the user can view all available historical schedule
executions. The page will display schedule executions for the last one week by default.
The user can use the search option to enter a different date range to fetch the
corresponding schedule executions.

Note: Deleting a schedule will delete the schedule definition and
also its entire execution history. The schedule will no longer exist and
will not run after deletion. There is no way to restore a deleted
schedule except by creating the schedule again.

Scheduler Console

6-20 Oracle Retail Bulk Data Integration Implementation Guide

Within the list of schedule executions, the records can be filtered based on the
Schedule Name, Action Execution Status and any string within the Action Execution
Log. The list of scheduled executions are sorted by schedule execution datetime, the
latest first.

Figure 6–18 Schedule Executions

Manage Configurations
From the Manage Configurations page, user can manage log levels, notifications, and
system options.

Log Level
The Log Level page displays log levels for all schedules. Users can change log level for
one or more schedules.

Figure 6–19 Log Level Page

Build version and date is displayed on the info icon when the user selects the same.
The icon is on the extreme right top corner of the page.

Notifications
User can view/update notifications details from Scheduler Notifications page.

Scheduler Console

BDI Scheduler 6-21

Figure 6–20 Scheduler Notifications Page

System Options
Users can add, update, or delete system options from the System Options page.
Credentials can also be created when a system option is created.

Figure 6–21 System Options Page

System Logs
The System Logs page displays a list of all schedule log files and log contents. Each
schedule has its own log file enabling easy access for the user to view the execution
logs and other information from the log files for diagnosing and troubleshooting
issues.

The list of log files are sorted by the last modified time of file with most recently
modified file first.

Scheduler Console

6-22 Oracle Retail Bulk Data Integration Implementation Guide

Figure 6–22 System Logs

Scheduler Security Considerations
This section describes the scheduler security considerations.

Scheduler Security
The Scheduler application uses basic authentication to authenticate users and allow
access to the requested resources based on authorization. Only valid users can access
the Scheduler Console and the REST resources. The Scheduler accesses the BDI process
flows using basic authentication.

Users need to belong to one of these roles:

■ Admin (assigned to BdiSchedulerAdminGroup in WebLogic Server)

■ Operator (assigned to BdiSchedulerOperatorGroup in WebLogic Server)

■ Monitor (assigned to BdiSchedulerMonitorGroup in WebLogic Server)

Only authorized users of specific role are allowed to access certain functionalities in
the Scheduler Console.

Users of the Admin role have access to all the functions in Scheduler, the users of
Operator role have limited authorizations to use only certain functions, and users of
the Monitor role only have view/read-only access to the Scheduler Console.

Function Admin Role Operation Role Monitor Role

View and search Yes Yes Yes

Create schedule Yes No No

Edit schedule Yes No No

Delete schedule Yes No No

Manual run schedule Yes Yes No

Disable schedule Yes Yes No

Enable schedule Yes Yes No

Scheduler Console

BDI Scheduler 6-23

Scheduler Operational Considerations
This section describes the scheduler operational considerations.

Users Roles for Monitoring and Administration
The Scheduler application is secured with role based security authorization. It is
recommended to use separate users for Monitor, Operator and Admin roles.

Monitoring Schedules
Schedules and executions can be effectively monitored using the Scheduler Console.
The console provides detailed action execution log and log files for each of the
schedules that can be used to verify the runtime executions of schedules and related
information.

Schedule Action Execution Log

Each schedule execution contains a 'Schedule Action Execution Log' that provides
descriptive information on the scheduled run or manual run of the schedule. The
Schedule Action Execution Log provides information as follows.

<SCHEDULED or MANUAL> RUN: Action triggered at: <Date and time>
Action Type: <ASYNC or SYNC>
Action Status: <TRIGGERED or STARTED or COMPLETED or FAILED>
Action Response: <The response string as returned by the schedule action dsl, or
the error message in case of an exception>
For example, for a successful execution of schedule ItemHdr_Fnd_From_RMS_
Schedule at the scheduled frequency, and action that triggers the process flow
ItemHdr_Fnd_ProcessFlow_From_RMS, the Schedule Action Execution Log will be:

SCHEDULED RUN: Action triggered at: Wed Jul 27 12:00:01 EDT 2016
Action Type: ASYNC
Action Status: TRIGGERED
Action Response: {"executionId":"ItemHdr_Fnd_ProcessFlow_From_
RMS#0d3d656d-041a-4068-8daf-8d17ee1ad899","processName":"ItemHdr_Fnd_ProcessFlow_
From_RMS"}
In case of an exception (say, connection error when invoking process flow), the action
execution log will look as follows:

SCHEDULED RUN: Action triggered at: Sat Aug 06 00:40:00 EDT 2016
Action Type: ASYNC
Action Status: FAILED
Action Response: Exception: java.net.ConnectException: Tried all: '1' addresses,
but could not connect over HTTP to server: java.net.ConnectException: Connection
refused
Check the logs for more details.
The above action execution log examples indicate async actions. For sync actions, the
the action execution log also shows when the schedule action started and when it
completed, which is particularly useful for a long running action for which the
Scheduler waits for the response until completion. For example,

SCHEDULED RUN: Action execution started at: Wed Aug 03 12:00:00 EDT 2016
Action Type: SYNC
Action execution ended at: Wed Aug 03 12:22:10 EDT 2016
Action Status: COMPLETED
Action Response: Batch process completed.

Note: The Action Response shows the value that the schedule action
dsl finally returns after completion.

Scheduler Console

6-24 Oracle Retail Bulk Data Integration Implementation Guide

Scheduler Log Files
Each schedule has its own log file. For example, a schedule named Store_Fnd_From_
RMS_Schedule will have its log file named Store_Fnd_From_RMS_Schedule.log.

The log file contains detailed information on schedule executions which can be
scheduled runs or manual runs, logs of actions such as disabling and enabling the
schedule, action log on schedule updates such as change in schedule frequency, and in
case of any exceptions, the exception stack trace.

Users can use the following keywords to search for specific information in the
schedule log file.

Maintaining Historical Schedule Executions
As the schedules run, schedule execution records are stored in the BDI_SCHEDULE_
EXECUTION table.

This table will grow larger as the number of schedule executions increase. Hence it is
recommended to periodically purge historical scheduled executions from the tables
that are older and no longer necessary, and only retain recent schedule executions of a
particular period, say for the last one month to now. This will help keep the table size
within a certain limit and prevent database growth.

Scheduler Customization
This section describes the scheduler customization.

Seed Data Reload
The sql script containing the seed data schedule definitions is located in the
bdi-scheduler-home/setup-data/dml folder.

During the initial deployment of the Scheduler application, seed data schedules get
loaded to the schedule definition table and the corresponding schedules are created.

If the Scheduler application needs to be redeployed and the seed data schedules need
to be reloaded during the redeployment (that is, to reset the schedules to the initial

Keyword Description

ScheduleId The primary key Id of the schedule

ScheduleName The schedule name

ScheduleExecutionId The execution Id of schedule run instance

Action Execution
Begin

Indicates the start of the log when schedule action begins.

Action Execution End Indicates the end of the log when schedule action ends. The log of
the schedule action execution can be found between the two
strings: ***Schedule Run :

Action Execution Begin*** and ***Schedule Run : Action
Execution End***

For manual run, it will be ***Manual Run :

Action Execution Begin*** and ***Manual Run : Action Execution
End***

Action execution
exception

The detailed exception message and stacktrace will be shown
following this string, when an exception has occurred in schedule
action execution.

Scheduler Console

BDI Scheduler 6-25

state as per seed data), set the LOADSEEDDATA column in the BDI_SYSTEM_
OPTIONS table to TRUE, and undeploy and redeploy the application.

Customizing Seed Data Schedules
By default all BDI seed data schedules are scheduled to run daily starting at midnight
(each schedule running with a gap of 5 minutes). The User can edit the seed data and
add new schedules to be loaded during deployment, by updating the seed data sql
script and adding corresponding schedule action scripts in the bdi-scheduler-home
install directory, before starting the installation.

Seed data sql file: bdi-scheduler-home/setup-data/dml/seed-data.sql
Schedule Action dsl files: bdi-scheduler-home/setup-data/dsl
An insert statement for a schedule seed data definition will look as follows (SQL for
Oracle database):

INSERT INTO BDI_SCHEDULE_DEFINITION (schedule_id, schedule_name, schedule_group,
schedule_description, schedule_status, schedule_start_datetime, schedule_type,
schedule_frequency, schedule_notification, schedule_notification_email, schedule_
action_type, schedule_action_definition) VALUES (7, 'InvAvailStore_Tx_From_RMS_
Schedule', 'Inventory', 'Schedule created from seed data. This schedule calls
process flow: InvAvailStore_Tx_ProcessFlow_From_RMS.', 'ACTIVE', TIMESTAMP
'2016-03-12 00:30:00', 'SIMPLE', 'DAILY', 'ON_SUCCESS,ON_ERROR', 'user@example',
'ASYNC', 'InvAvailStore_Tx_From_RMS_Schedule_Action.sch')

■ schedule_id should be a unique number for each schedule.

■ schedule_name should be unique.

■ schedule_status needs to be ‘ACTIVE’ for schedule to be created and active.

■ schedule_type should be ‘SIMPLE’ with any of the schedule_frequency values
mentioned above. Advanced schedule (calendar schedules with complex cron
expression) is not supported through seed data during deployment.

■ schedule_start_datetime:

Need to be in the format yyyy-mm-dd hh:mm:ss

For example, 2016-01-01 00:00:00, 2016-01-01 18:30:00

■ schedule_frequency:

Valid values are: DAILY, HOURLY, WEEKLY, MONTHLY, WEEKDAY, WEEKEND,
SATURDAY, SUNDAY, FIRSTDAYOFMONTH, LASTDAYOFMONTH, ONCE

■ schedule_notification:

Valid values are: ON_START, ON_SUCCESS, ON_ERROR (separate multiple
values by comma)

Note: The above redeployment procedure will reset the current
schedule definitions (that is, existing schedules and any changes will
be deleted) and the schedules will be recreated as per seed data
definitions. Use this option with caution and only when absolutely
necessary.

Note: When adding or editing schedule definitions in seed data to be
loaded at application startup. All these fields (as shown in the sql
statement above) are required fields to create a schedule at startup.

Scheduler Console

6-26 Oracle Retail Bulk Data Integration Implementation Guide

■ schedule_email:

Valid email-id for notification (separate multiple emails by comma). Email is
required if schedule_notification is specified.

■ schedule_action_type:

Valid values are (based on the action specified): ‘ASYNC’ or ‘SYNC’.

■ schedule_action_definition in seed data refers to the name of the corresponding
schedule action dsl file (this will get loaded at startup).

Each schedule should have a corresponding schedule action dsl script defined. This
will be the action that gets executed when the schedule runs.

To load the schedule action dsl during deployment, add the schedule action dsl file
under bdi-scheduler-home/setup-data/dsl with file name convention: <Schedule
Name>_Action.sch.

For example for adding a new schedule named Schedule_1, add schedule action dsl
script Schedule_1_Action.sch. During deployment, the Scheduler will create Schedule_
1 and update the schedule definition with the action script from the corresponding file
Schedule_1_Action.sch.

Customizing Schedule Actions
The seed data schedules in the Scheduler are the schedules that call the BDI process
flows provided out-of-the-box. The Schedule Actions define the REST calls to the BDI
process flows.

In an enterprise implementation, there will be requirements to schedule batch
processes, any recurring jobs or activities that are not BDI process flows. There can also
be existing batch processes or services that need to be scheduled.

The Scheduler can be used for such scheduling requirements by defining appropriate
Schedule Actions to invoke the services.

The Scheduler can be used to schedule RESTful services and as the Schedule Action is
a DSL based on Groovy, valid Groovy or Java code can also be used within the action
part that will be executed by the Scheduler based on the defined schedule.

The syntax for Schedule Action is as simple as follows.
action {

//your implementation goes here
}
The following Schedule Action syntax specifies how a REST service can be called from
the Scheduler (assuming the REST resource does not require any authentication). The
response from the REST service will be treated as string.

action {
(POST[<your REST service URL here>]) as String
}
This is a simple approach for scheduling existing and new services that can be exposed
as REST services.

The Schedule Action syntax to call a REST service with authentication and with base
URL configured in System Options will look as follows.

action {
POST[externalVariables.myRESTServiceBaseUrl +
"/resources/myRESTresource"]^externalVariables.myRESTServiceBaseUrlUserAlias) as
String
}

Scheduler Console

BDI Scheduler 6-27

The externalVariables is the name of the variable used internally by the Scheduler to
access system options parameters. Any parameters (key-values) configured in System
Options can be accessed using the notation
externalVariables.<my-system-option-parameter>

Admin users can utilize System Setting RESTful service to add or update system
options parameters, and setting up credentials (stored in wallet) for any authentication
to be used by the application. Refer Appendix E for details on the System Setting REST
resources.

In the above example, the user can add system option parameters named
'myRESTServiceBaseUrl' with the REST resource base url value (for example,
http://<myserverhost>:<port>/myapp) and 'myRESTServiceBaseUrlUserAlias' which
will be the alias name to be used for authentication and the value of this parameter
should be GET_FROM_WALLET:GET_FROM_WALLET to indicate that the
corresponding credentials for the alias need to be obtained from the wallet during
runtime by the application.

Scheduler Troubleshooting
Any failure in schedule execution can be analysed in the Scheduler application by
checking the Scheduler log files for the corresponding schedule.

If a schedule execution is 'FAILED' due to an exception response from the process flow,
then the details of corresponding process flow execution instance, the exception details
and any stack trace can be viewed in the corresponding process flow logs using the
Process Flow Admin console for further troubleshooting.

Scheduler Known issues
The Scheduler Console provides a calendar widget for datetime fields that are
currently supported only by the Chrome browser. Hence it is recommended to use the
latest version of the Chrome browser to access the Scheduler Console.

If any other browser is used that does not support the calendar widget for the datetime
input, the datetime fields may appear as textbox. Users can enter the datetime input as
text, but the value should be in the format of 'yyyy-MM-ddTHH:mm', for example,
2016-01-01T20:00. There is no loss of functionality due to this limitation however.

Note: The schedule execution where the BDI process flow is called is
only a trigger for the process flow execution, hence the actual
execution of the process flow and the status and logs thereof can only
be viewed in the BDI Process Flow Admin console.

Scheduler Console

6-28 Oracle Retail Bulk Data Integration Implementation Guide

7

CLI Tools 7-1

7 CLI Tools

The BDI suite provides two CLI (Command-Line Interface) tools as part of this release.

■ BDI CLI Job Executor BDI

■ CLI Batch Transmitter

The following sections describe in detail the above CLI components, their setup and
usage.

BDI CLI Job Executor
The BDI CLI Job Executor is a standalone command line utility that helps in basic
operation of BDI batch jobs through commands. It uses the REST services that the BDI
Batch Job Admin provides to list jobs and executions, get status of a job, and start, stop
and restart a batch job.

Tool Setup
To prepare the tool for use, follow these steps.

The bdi-cli-job-executor home directory (where the tool software package is extracted)
contains a 'conf' directory where the tool related configuration file will be present, and
'bin' directory where the executable to run the tool will be present.

■ Configure BDI Batch Job Admin URL and alias name for the credentials to access
Job Admin URL.

– Edit conf/bdi-job-admin-info.json file to add the BDI Batch Job Admin URL
value for the jobAdminUrl property.

* Example:
"jobAdminUrl":"http://<hostname>:<port>/bdi-rms-batch-job-admin/"

– Add alias name in the property jobAdminUserAlias.

* Example:

"jobAdminUserAlias":"rmsJobAdminBaseUrlUserAlias"

■ Run: bdi-cli-job-executor.sh -setup-credentials

– This prompts for the credentials for the given alias. Enter the corresponding
username and password to be used to access the Job Admin URL. The

Note: bdi-cli-job-executor.sh will be in the 'bin' directory.

BDI CLI Transmitter

7-2 Oracle Retail Bulk Data Integration Implementation Guide

credentials will be stored in the wallet and used to invoke the BDI Job Admin
REST services.

Tool Usage
The BDI CLI Job Executor tool is run using the shell script: bdi-cli-job-executor.sh from
the 'bin' directory.

Usage: bdi-cli-job-executor.sh -[option]

BDI CLI Transmitter
The BDI CLI Transmitter is a standalone command line tool to transmit batch interface
data files to a destination BDI receiver system. It is particularly used where the source
system is non-BDI (that is, the source system does not have or use BDI Batch Job
Admin application) but needs to send interface data files to a receiver system running
the BDI Job Admin application.

The tool uses the BDI Job Admin Receiver REST service URL to transmit the data to
the destination system. So it is necessary that the destination system runs the BDI Job
Admin application to use the tool.

Tool Setup
To prepare the tool for use, follow these steps.

Option Description

list Lists all available job names and details.

bdi-cli-job-executor.sh -list

list runningJobs Lists all currently running jobs and job execution IDs.

bdi-cli-job-executor.sh -list runningJobs

start <jobname> Starts a job of given name.

Example:

bdi-cli-job-executor.sh -start MyBatchJob

restart <jobname>
<executionId>

Restarts a failed job execution with the corresponding execution
Id.

Example:

bdi-cli-job-executor.sh -restart MyBatchJob 12345

stop Stops all the running job executions.

bdi-cli-job-executor.sh -stop

stop <executionId> Stops the currently running job execution of given execution Id.

Example:

bdi-cli-job-executor.sh -stop 12345

status <jobname> Gets the status of the job of given job name.

Example:

bdi-cli-job-executor.sh -status MyBatchJob

status <jobname>
<instanceId>

Gets the status of the job of given job name and job instance Id.

Example:

bdi-cli-job-executor.sh -status MyBatchJob 54321

BDI CLI Transmitter

CLI Tools 7-3

■ The bdi-cli-transmitter home directory (where the tool software package is
extracted) contains 'conf' directory where the tool related configuration files will
be present, and 'bin' directory where the executable to run the tool will be present.

■ Configure conf/bdi-file-transmitter.properties. The following describes the
properties to be configured. The properties file provides some sample values for
reference to start with. The values specified in the properties file can be overridden
using the command-line input options if required, when running the tool for file
transmission.

Property Description

source.system.name The name of the source system or application that provides the
source data to be transmitted.

For example, source.system.name=RMS

<receiverAppName>.
receiver.url

The Receiver REST service URL of the BDI Receiver application
indicated by <receiverAppName> (should be in lowercase).

For example, if the BDI receiver application is RXM, then specify
the property and value as:

rxm.receiver.url=http://<bdi-rxm-app-hostname>:<port>/bdi-rx
m-batch-job-admin/resources/receiver

<receiverAppName>.
receiver.url.useralias

Alias name for the credentials to be used to connect to the
corresponding receiver service. The alias name with the
credentials are stored in a wallet. <receiverAppName> should be
in lowercase.

Example: rxm.receiver.url.useralias=rxmReceiverUrlUserAlias

<InterfaceModuleNa
me>.receiver.appnam
e

Name of the BDI receiver application for the interface module
<InterfaceModuleName>.

Specify the name in lowercase.

Example:

Diff_Fnd.receiver.appname=rxm

Store_Fnd.receiver.appname=sim

<InterfaceModuleNa
me>.dataset.type

The data set type of the data to be transmitted for the interface
module identified by <InterfaceModuleName>.

Valid value is FULL or PARTIAL.

Example: Diff_Fnd.dataset.type=FULL

Only FULL data sets are supported in the currently implemented
BDI flows.

<InterfaceModuleNa
me>.interfaceShortN
ames

The interface name(s) for the corresponding interface module
<InterfaceModuleName>. Multiple interface names can be
specified (each separated by a comma) as multiple interfaces can
be part of an interface module. The interface module name and
interface names should be the same as expected by the BDI
receiver application where the files are transmitted.

Example:

Diff_Fnd.interfaceShortNames=Diff DiffGrp_
Fnd.interfaceShortNames=Diff_Grp,Diff_Grp_Dtl

BDI CLI Transmitter

7-4 Oracle Retail Bulk Data Integration Implementation Guide

■ Run: bdi-file-transmitter.sh -setup-credentials.

Run -setup-credentials to configure the BDI Receiver service user credentials.
Running this command will prompt for the username and password for each of
the <receiverAppName>.receiver.url.useralias specified in
bdi-file-transmitter.properties file.

The credentials entered for each alias will be stored in a secure wallet and used to
connect to the corresponding BDI Receiver service for transmission of files.

This is a prerequisite step to use the tool but usually a one-time setup before
running bdi-file-transmitter.sh for transmission of files.

■ Optionally, configure conf/bdi-file-transmitter-runtime.properties that contains
parameters (described below) for performance tuning of the tool.

Start with default values as present in the properties file, analyze the performance
and choose optimal values for the parameters for better performance if required.
The tool will use default values for the parameters (mentioned below) when no
values are specified in the properties file.

Tool Usage
The BDI CLI Transmitter tool is run using the shell script: bdi-file-transmitter.sh from
the 'bin' directory.

The tool can be run in interactive and noninteractive modes.

<InterfaceModuleNa
me>.<InterfaceShort
Name>.input.filepath

Specify the file location where the corresponding interface data
files to be transmitted are present. Each interface in a interface
module should have separate file locations.

Example:

Diff_Fnd.Diff.input.filepath=/home/bdi/diff_fnd/diff/files

DiffGrp_Fnd.Diff_Grp.input.filepath=/home/bdi/diffgrp_
fnd/diff_grp/files

DiffGrp_Fnd.Diff_Grp_Dtl.input.filepath=/home/bdi/diffgrp_
fnd/diff_grp_dtl/files

Note: bdi-file-transmitter.sh will be in the 'bin' directory.

Property Description

multiple_files_process_limit The maximum number of files to process in parallel at
any given time. Default value is 5.

file_transmission_thread_limit The number of parallel threads to run to process a
single file. Default value is 3.

transmission_record_size The maximum number of records per block or chunk
to transmit to the receiver service per service call.
Default value is 20000.

transmission_timeout The timeout in minutes for file transmission. The
process will timeout and end when the file
transmission is still not complete after the specified
time. Default value is 300 minutes.

Property Description

BDI CLI Transmitter

CLI Tools 7-5

Interactive Mode: Run bdi-file-transmitter.sh

For user interactive mode where the program prompts for input, just run
bdi-file-transmitter.sh with no options.

This will prompt for each input with descriptions which will be self-explanatory. The
user can enter value as required or skip optional parameters. When no value is
specified for optional parameters, the tool will try to use the default values as specified
in the bdi-file-transmitter.properties file or stop executing when no default value is
present.

Non-Interactive Mode: Run bdi-file-transmitter.sh [input]

The tool can be run with the following inputs as described below.

Some examples of running the transmitter tool command-line:

Note: The only required input is interface module name, when the
other input values are specified in bdi-file-transmitter.properties file.

Input Description

-m or
--interfacemodule
<interfaceModuleNa
me>

(Required) The interface module name. Should be the same as the
interface module name expected by the BDI receiver application.

-i or
--interfaceshortnames
<interfaceShortName
s>

(Optional) Multiple interface names should be separated by
comma. If not specified, the program will use the interface names
corresponding to the interface module as specified in
bdi-file-transmitter.properties file.

The interface names should be the same as expected by the BDI
receiver application

-s or --sourcesystem
<sourceSystemName
>

(Optional) The source system name. If not specified, the program
will use the source.system.name given in the properties file.

-f or --filelocation
<inputFilePaths>

(Optional) The location of interface data file(s) that are to be
transmitted. This can be single file or a directory path with
multiple data files of the interface. Multiple file paths should be
separated by comma, for each interface in the corresponding order.
If not specified, the program will use the input file paths given for
the interfaces as given in the properties file.

-a or --receiverapp
<receiverAppName>

(Optional) The BDI receiver app name. This is used to get the
receiver url and/or useralias from properties file if any of those
values are not provided. If not specified, the program will use the
receiver app name specified for the interface in the properties file.

-r or --receiverurl
<fileReceiverUrl>

(Optional) The receiver url. If not specified, the program will use
the receiver url of the receiver app specified for the interface in the
properties file, for transmission of files.

-u or --useralias
<receiverUrlUserAlia
s>

(Optional) The alias name for the credentials to be used to connect
to the receiver service url. The credentials corresponding to the
alias should exist in the wallet. If not specified, the program will
use the receiver url useralias of the receiver app specified for the
interface in the properties file.

-d or --datasettype
<dataSetType>

(Optional) The data set type that specifies the data transmitted is
full or delta load. Valid value: 'FULL' or 'PARTIAL'. If not
specified, the program will use the interface specific data set type
as given in the properties file.

BDI CLI Transmitter

7-6 Oracle Retail Bulk Data Integration Implementation Guide

bdi-file-transmitter.sh -m Diff_Fnd
bdi-file-transmitter.sh -m Diff_Fnd -i Diff
bdi-file-transmitter.sh -m DiffGrp_Fnd -i Diff_Grp,Diff_Grp_Dtl
bdi-file-transmitter.sh -m Diff_Fnd -a sim
bdi-file-transmitter.sh -m DiffGrp_Fnd -i Diff_Grp,Diff_Grp_Dtl -f
/home/bdi/diffgrp_fnd/diff_grp/files,/home/bdi/diffgrp_fnd/diff_grp_dtl/files
bdi-file-transmitter.sh -m "Diff_Fnd" -i "Diff" -s "RMS" -d "FULL"
bdi-file-transmitter.sh -m Diff_Fnd -i Diff -s "RMS" -f "/home/bdi/diffgrp_
fnd/diff/files" -a "sim" -r
"https://bdisimapphost:9001/bdi-sim-batch-job-admin/resources/receiver" -d "FULL"

File Processing
The BDI Transmitter tool supports transmission of flat files, for example, .csv files, in
UTF-8 format. The BDI Receiver application supports only csv files. Hence the
interface data files to be transmitted need to contain records with comma-separated
field values.

The order of the fields in the file should be as expected by the BDI Receiver
application, so that each value is inserted in the right columns of the destination
interface tables. No header line should be present in the file (each line is treated as data
record). Each record should be in a newline.

The interface module name and interface names for the files to be transmitted should
be same as expected by the BDI Receiver application.

The transmitter tool can process a single file or a directory containing multiple files.
But the tool does not process files recursively in subdirectories.

Files are processed and transmitted per interface module. Each run of processing of
files of the interface module will be considered a transaction and a Transaction Id will
be generated and associated to the transmission of files (at the interface module level).
Files of multiple interfaces in an interface module will be part of the same transaction.

Each file transmission within a transaction will have a Transmission Id associated to it.
The same transaction Id and transmission Id are sent to the BDI Receiver application,
so the corresponding transmission details can be seen in the Job Admin console of the
BDI Receiver application.

After successful transmission, the file will be moved to the archive directory:

<inputFileDirectory>/archive/<interfaceModuleName>/<transactionId>
For example,

if the input file location is '/home/bdi/interface/files' and the interface module of the
files is 'Diff_Fnd', and the transaction Id of the file transmission is 'Tx#1475858081837',
then after successful transmission the file will be moved to the directory:

/home/bdi/interface/files/archive/Diff_Fnd/Tx#1475858081837.

Output Logs
The transmitter tool outputs messages and logs to the terminal console where the
command is run.

The tool also creates a log file that contains detailed logs about the processing of files.
The log will show the Transaction Id and Transmission Id of each file transmission
among other details.

The log file is created in the logs directory under the tool home directory
(bdi-cli-transmitter/logs).

BDI CLI Transmitter

CLI Tools 7-7

The name of the log file will be in the format: bdi-file-transmitter_yyyy-mm-dd_
hh:mm:ss, for example bdi-file-transmitter_2016-07-04_10:38:59.

Error Reprocessing
In case of any error in file processing, error in transmission of file to the receiver
service, timeout of file transmission, or any other failure, the file will be moved to the
'failed' directory:
<inputFileDirectory>/failed/<interfaceModuleName>/<transactionId>

For example, if the input file location is '/home/bdi/interface/files' and the interface
module of the files is 'Diff_Fnd', and the transaction Id of the file transmission is
'Tx#1475858081837', then if the transmission of file fails, the file will be moved to the
directory: /home/bdi/interface/files/failed/Diff_Fnd/Tx#1475858081837.

A properties file containing the input details corresponding to the failed file will be
created. For example, if the file named 'Item_1.csv' has failed, then a file named 'Item_
1.csv.properties' will be created in the 'failed' directory. This acts as the input context
that will be used when the file is reprocessed. The user should not delete or modify
this properties file, if the data file has to be re-processed with the original input
context.

Due to parallel processing of files by the transmitter, there may be a scenario where
some records in the file may have been transmitted successfully, but part of the file
transmission may have failed. Even in this case, the entire file will be treated as failed
and moved to the 'failed' directory.

Reprocessing will be at the file level and not at the block level where the transmission
may have failed. In the case of partial transmission of file, the BDI Receiver application
also marks the whole transmission as failed and hence the entire file can be
retransmitted to be processed again by the receiver application.

To retry failed files (that did not get transmitted successfully in previous transmission)
use the below command:

bdi-file-transmitter.sh -retry-failed <inputFileDir or inputFilePath>

For example, bdi-file-transmitter.sh -retry-failed
/home/bdi/interface/files/failed/Diff_Fnd/Tx#1475858081837

bdi-file-transmitter.sh -retry-failed /home/bdi/interface/files/failed/Diff_
Fnd/Tx#1475858081837/Diff_1.csv

Once a file is successfully reprocessed, it will be renamed as <filename>-retransmitted.
For example, Diff_1.csv-retransmitted. And, the corresponding properties file will be
deleted.

BDI CLI Transmitter

7-8 Oracle Retail Bulk Data Integration Implementation Guide

8

BDI Data Integration Topologies 8-1

8BDI Data Integration Topologies

The BDI infrastructure applications move data from one application to another. So
there is data producing applications and data consuming applications. Depending on
the customer needs, the data produced by an application may be used by one or more
consuming applications. This leads to different deployment architectures for various
needs.

In all of the topologies presented, regardless of the examples presented, in practice, the
sender and receiver locations can be on-premise, cloud, or hybrid deployments. BDI is
designed to be location transparent.

Point to Point Topology

Figure 8–1 Point to Point

In this deployment topology, there is only one consumer for an interface module (An
interface module may have one or more interfaces).

A detailed diagram of a point to point topology usage in Oracle Retail is shown below.

Note: In the case of where there are multiple receivers for the data,
this topology is not the most efficient.

Sender side split

8-2 Oracle Retail Bulk Data Integration Implementation Guide

Figure 8–2 Detailed BDI Point to Point Topology

Sender side split

Figure 8–3 Sender Side Split

In the case of Sender Side Split (SSS), the data is extracted once from the source
system. The extracted data is transmitted to each destination separately. Since, unlike
point to point topology, the extraction done only once regardless of the number of
destinations.

A detailed diagram of sender side split topology usage in Oracle Retail is shown
below.

Receiver Side Split

BDI Data Integration Topologies 8-3

Figure 8–4 Sender Side Split Topology

Receiver Side Split

Figure 8–5 Receiver Side Split

The Receiver Side Split (RSS) topology is used for multi destination data transfer such
as Sender Side Split. In this topology data is extracted and transmitted to the
destination only once regardless of the number of destinations. This topology differs
from the sender side split in the number of times the data is transmitted.

Receiver side split can only be used if all the destinations have a shared network drive
access. This is the most optimal multi destination data transfer topology.

A detailed diagram of receiver side split topology usage in Oracle Retail is shown
below.

Receiver Side Split

8-4 Oracle Retail Bulk Data Integration Implementation Guide

Figure 8–6 Receiver Side Split

9

Pre-implementation Considerations 9-1

9Pre-implementation Considerations

Before BDI is installed into an enterprise, there are many factors that need to be
considered. Planning and addressing each of the factors will avoid having to reinstall
or re-architect because of performance or operational problems.

BDI Software Lifecycle Management
Software applications, after being made generally available (GA), have a well defined
lifecycle process. The implementer must manage and perform tasks in these phases:

■ Acquire the software components

■ Prepare the environment

■ Assemble the application

■ Deploy and Start the application

■ Perform day-to-day monitoring to make sure the application is running properly

■ Apply code fixes to the application

Preparation Phase
In this phase, all relevant components are downloaded, extracted, and configured.

Application Assembly Phase
In this phase, site specific configuration changes are made and all relevant BDI wars
are generated.

Deployment Phase
In this phase, using the BDI wars created in the previous step, the wars are deployed
to application server instances.

Operation Phase
In this phase, day-to-day operations of the BDI applications are performed.

Maintenance Phase
In this phase, code fixes, patching, configuration changes and maintenance of the BDI
applications are performed.

Physical Location Considerations

9-2 Oracle Retail Bulk Data Integration Implementation Guide

Physical Location Considerations
The Oracle Retail Merchandising System (RMS) is the most important core business
application from the suite of Oracle Retail Product offerings. RMS provides most of the
retail business functionality that offers its customers. In other words RMS is the central
hub of Oracle retail applications. Since RMS is the central hub of retail
information/data and most information/data flows outward from RMS to other edge
retail applications through BDI, the decision on where to physically/logically locate
BDI applications is very important and will have direct impact on the functioning of
your enterprise.

It is recommended to keep the "bdi-rms" integration schema created in the RMS
database server so that the data movement from RMS to outbound tables located in
integration schema is fast. Similarly the "bdi-rxm" integration schema is created in the
RXM database server so that the data movement from inbound tables located in the
integration schema to the RXM transactional tables is fast.

It is also recommended to colocate the "bdi-rms-batch-job-admin" application near
RMS application and the "bdi-rxm-batch-job-admin" application near RXM
application. The Job Admin application for BDI RMS (bdi-rms-batch-job-admin) need
to be deployed in a separate domain. Similarly BDI RXM (bdi-rxm-batch-job-admin)
needs to be deployed in a separate domain.

Multiple instances of the BDI RXM application can improve the transfer of bulk data
between RMS and RXM.

High Availability Considerations
As businesses are maturing and having to do everything quicker, better, faster, and
with less resources and money, they are pushing similar expectation onto their IT
infrastructure. Business users are expecting more out of their IT investments, with zero
down time. Consistent predictable responding systems, which are highly available,
have become a basic requirement of today's business applications.

Modern business application requirements are classified by the abilities that the
system must provide. This list of abilities such as availability, scalability, reliability,
audit ability, recoverability, portability, manageability, and maintainability determine
the success or failure of a business.

With a clustered system many of these business requirement abilities gets addressed
without having to do lots of development work within the business application.
Clustering directly addresses availability, scalability, recoverability requirements
which are very attractive to a business. In reality though it is a tradeoff, a clustered
system increases complexity, is normally more difficult to manage and secure, so one
should evaluate the pros and cons before deciding to use clustering.

Oracle provides many clustering solutions and options; those relevant to BDI are
Oracle database cluster (RAC) and WebLogic Server clusters.

WebLogic Server Cluster Concepts
A WebLogic Server cluster consists of multiple WebLogic Server managed server
instances running simultaneously and working together to provide increased
scalability and reliability. A cluster appears to clients to be a single WebLogic Server
instance. The server instances that constitute a cluster can run on the same machine, or
be located on different machines. You can increase a cluster's capacity by adding
additional server instances to the cluster on an existing machine, or you can add
machines to the cluster to host the incremental server instances. Each server instance
in a cluster must run the same version of WebLogic Server.

Physical Location Considerations

Pre-implementation Considerations 9-3

In an active-passive configuration, the passive components are only used when the
active component fails. Active-passive solutions deploy an active instance that handles
requests and a passive instance that is on standby. In addition, a heartbeat mechanism
is usually set up between these two instances together with a hardware cluster (such
as Sun Cluster, Veritas, RedHat Cluster Manager, and Oracle CRS) agent so that when
the active instance fails, the agent shuts down the active instance completely, brings up
the passive instance, and resumes application services.

In an active-active model all equivalent members are active and none are on standby.
All instances handle requests concurrently.

An active-active system generally provides higher transparency to consumers and has
a greater scalability than an active-passive system. On the other hand, the operational
and licensing costs of an active-passive model are lower than that of an active-active
deployment.

bdi-<app> application and WebLogic Application Server Cluster
BDI uses the Receiver Service to transfer data from one system to another system. The
BDI edge apps such as RXM, SIM can be configured in an active-active cluster mode to
achieve better throughput.

In active-active cluster mode, bdi-rms application can send data to multiple instances
of the bdi-rxm application simultaneously.

Logging
Issue

The "System Logs" tab in Scheduler, Process Flow, and Job Admin UIs show only logs
from the server that UI is connected to.

Solution

Use a common log directory for each of the BDI components. BDI components use the
following directory structure for creating log files.

$DOMAIN_HOME/logs/<server name>/<app name>

Example

$DOMAIN_HOME/logs/server1/bdi-rms-job-admin_war

$DOMAIN_HOME/logs/server2/bdi-rms-job-admin_war

1. Create a common log directory (e.g. /home/logs/bdijobadmin) for each BDI
application.

2. Create symbolic links to the common log directory for each server using the below
command from $DOMAIN_HOME/logs directory.

ln -s /home/logs/bdijobadmin

server1/bdi-rms-job-admin_war

ln -s /home/logs/bdijobadmin

Note: See the Oracle® Fusion Middleware Using Clusters for Oracle
WebLogic Server documentation for more information.

http://download.oracle.com/docs/cd/E15523_
01/web.1111/e13709/toc.htm.

Physical Location Considerations

9-4 Oracle Retail Bulk Data Integration Implementation Guide

server2/bdi-rms-job-admin_war

3. If the directory $DOMAIN_HOME/logs/<server>/<app> already exists, it needs
to be deleted before symbolic link is created.

4. App needs to be restarted after symbolic link is created.

When weblogic managed servers are in different machines a shared network disk
has to be used.

Update Log Level
Issue

When log level is updated through UI or REST end point, it updates the log level only
on the server it is connected to.

Solution

Log level needs to be updated through the URL of all the nodes in the cluster using UI
or REST endpoint.

Example

http://server1:port1/bdi-rms-batch-job-admin/system-setting/system-logs

http://server2:port2/bdi-rms-batch-job-admin/system-setting/system-logs

Create/Update/Delete System Options
Issue

When system options are created/updated/deleted using UI or REST end point, the
changes are reflected only on the server that client is connected to.

Solution

The reset-cache REST endpoint need to be invoked on the other nodes in the cluster for
that application in bdi.

Example

http://server1:port1/bdi-rms-batch-job-admin/system-setting/reset-cache

Create/Update/Delete System Credentials
Issue

When system credentials are created/updated/deleted using REST endpoint, the
credentials are created/updated/deleted only on the server that client is connected to.

Solution

The REST endpoint that creates/updates/deletes credentials need to be invoked on all
the nodes in the cluster for that application in BDI.

Example

http://server1:port1/bdi-rms-batch-job-admin/system-setting/system-credentials

http://server2:port2/bdi-rms-batch-job-admin/system-setting/system-credentials

Physical Location Considerations

Pre-implementation Considerations 9-5

Scheduler Configuration Changes for Cluster
1. Two data sources need to be created for scheduler on cluster in the Admin

Console.

■ Create a non-XA data source (SchedulerTimerDs) pointing to the schema that
contains the WEBLOGIC_TIMERS table. This is the schema with the WLS
suffix, created using RCU.

Specify this schema in the scheduling tab of cluster configuration in WebLogic
console.

■ Create a non-XA data source (SchedulerRuntimeDs) pointing to schema that
contains ACTIVE table. This is the schema with the WLS_RUNTIME suffix,
created using RCU.

Specify this schema in the Migration tab of cluster configuration in the
WebLogic console.

Perform the following steps to configure the data sources:

a. Specify the data source for schedule timers in the Admin Console.

b. Login to Admin Console.

c. Click Lock & Edit (For Production Mode only).

d. Click Environment -> Clusters.

e. Click the cluster name.

f. Click Scheduling.

g. Select SchedulerTimerDs for the Data Source For Job Scheduler field.

h. Click Save.

i. Click Migration.

j. Select Migration Basis: DataBase, and Data Source For Automatic Migration:
SchedulerRuntimeDs.

k. Click Save.

l. Verify Auto Migration Table Name populated with ACTIVE.

m. Click Activate Changes.

2. Update the weblogic-ejb-jar.xml in WEB-INF folder of the
bdi-scheduler-ui-<version>.war in <bdi-home>/dist folder with the contents
shown (The entry in red is the change from the existing contents of the file)

Instructions to update

a. cd dist

b. jar xf bdi-scheduler-ui-<version>.war WEB-INF/weblogic-ejb-jar.xml

c. Update the WEB-INF/weblogic-ejb-jar.xml with the contents below

d. jar uf bdi-scheduler-ui-<version>.war WEB-INF/weblogic-ejb-jar.xml

e. Delete dist/WEB-INF folder

f. Deploy the scheduler application

<weblogic-ejb-jar xmlns="http://xmlns.oracle.com/weblogic/weblogic-ejb-jar"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<security-role-assignment>

Physical Location Considerations

9-6 Oracle Retail Bulk Data Integration Implementation Guide

<role-name>AdminRole</role-name>
<principal-name>BdiSchedulerAdminGroup</principal-name>

</security-role-assignment>

<security-role-assignment>
<role-name>OperatorRole</role-name>
<principal-name>BdiSchedulerOperatorGroup</principal-name>

</security-role-assignment>
<security-role-assignment>

<role-name>MonitorRole</role-name>
<principal-name>BdiSchedulerMonitorGroup</principal-name>

</security-role-assignment>
<timer-implementation>Clustered</timer-implementation>

</weblogic-ejb-jar>

10

Deployment Architecture and Options 10-1

10Deployment Architecture and Options

There are no physical location constraints on where bdi-<app> applications can be
deployed as long as they are visible from the same network. But the decision on where
to physically and logically locate your bdi-<app> applications has a huge impact on
the high availability, performance and maintainability of your integration solution, so
this decision must be given careful consideration.

Recommended Deployment Options
The BDI applications can be deployed in a variety of physical and logical
configurations depending on the retailer's needs. Oracle Retail has the two
recommended configuration alternatives.

Distributed
In this deployment, each of the BDI application (bdi-<app>.war) is deployed in a
different WebLogic Application Server than the integrating application (<app>.ear)
but it is physically close to the integrating application. This is the recommended
configuration for production environment.

Recommended Deployment Options

10-2 Oracle Retail Bulk Data Integration Implementation Guide

Figure 10–1 Distributed Configuration

Centralized
In this deployment, all bdi applications (bdi-<app>.ear) are deployed in a single
WebLogic Application Server (not managed server instance) independent of where the
Oracle Retails apps (<app>.ear) WebLogic Application Server is. This is an alternative
configuration for non-production environments such as Dev.

Recommended Deployment Options

Deployment Architecture and Options 10-3

Figure 10–2 Centralized Configuration

In all cases, the BDI application (bdi-<app>.war) should be deployed in its own
managed server instance. It is not recommended to deploy multiple BDI applications
into the same WLS managed server instance, or to have the BDI application
(bdi-<app>.war) deployed into the same WLS managed server instance as the
integrating application (<app>.ear). The configuration of deploying multiple
bdi-<app>s in one managed server instance is not recommended or supported by
WLS.

BDI-External Application
BDI is an integration infrastructure product which integrates Oracle Retail applications
and third party applications. BDI external application is designed to address the
complexities for third party integration with Oracle Retail application.

In BDI, bulk data movement happens between sender and receiver application.

External application may be a sender or receiver. But here, we talk about external
application as only receiver.

For example, Sender application is RMS and Receiver is a third party application.

There will be two external applications for the integration to happen,

1. Bdi-external integration application.

2. External edge application.

Bdi-external application organizes all Downloader Transporter and Uploader jobs.
External application organizes all the importer jobs. Both bdi-external and external
edge application provides GUI and CLI tool to manage jobs like start/stop/restart
jobs.

Recommended Deployment Options

10-4 Oracle Retail Bulk Data Integration Implementation Guide

There are process flow dsl files for each interface from RMS to external application
which have all the activities for the particular interface. Scheduler will trigger the
process flow to execute the activities within the dsl file.

Installation details
Please refer BDI Installation doc for the details.

11

Implementation Process 11-1

11Implementation Process

This release of BDI defines the full life cycle of the BDI software product. The BDI life
cycle and phases are described in detail in the software lifecycle management section
of this document. For every life cycle phase and task that BDI defines, it provides
corresponding tools and utilities to manage and operate on those phases.

There are several prerequisite steps that should be followed to have a successful BDI
installation and deployment.

■ Understand the BDI Core Concepts.

■ Understand the deployment options.

■ Understand the BDI life cycle.

■ Understand the physical and logical requirements and limitations of the BDI
Components.

■ Understand the BDI Operational Considerations.

The process of implementation should follow these general steps:

■ Work with the teams at your organization dedicated to Oracle Retail to coordinate
plans for the number and type of environments needed (for example, Dev,
Integration, Production).

■ Each type of environment needs to be sized, deployed, and managed in
conjunction with the implementation of the Oracle Retail applications. It is critical
to understand the volume requirements of the production system so that the
appropriate decisions can be made about the deployment option and the physical
location and sizing.

■ All deployments have integration to existing retailer systems. It is critical to
understand the position of the BDI as it fits into the overall integration architecture
and that the current operations and architecture team understand the BDI and its
capabilities.

■ Select a deployment option (distributed or centralized). This may be mixed
depending on the phases of deployment. Development and test may be
centralized and production distributed. Understand the operational complexities
of each and plan for the staffing.

■ Work with the application server administration teams to determine the physical
and logical placement of the BDI components.

■ Work with the system administrator and database administrator to appropriately
place, size, and configure the file systems and databases.

Work with the system administrators to select the central BDI management
location, bdi-home.

11-2 Oracle Retail Bulk Data Integration Implementation Guide

■ The installation of the BDI has many prerequisites and dependencies that require
the understanding, support and effort of database administrators, system
administrators, application server administrators, and your organization's Oracle
Retail application teams. It is a critical role of the BDI system administrator to
work with each team, regardless of the site organization structure.

■ Create operational plans for the BDI life cycle.

■ Create plans for environment monitoring and maintenance.

■ Plan to performance test.

12

Performance Considerations 12-1

12Performance Considerations

The performance of each of these components is influential in the overall performance
of the system:

■ The application server(s) topology and configuration.

■ The BDI deployment approach.

■ The hardware sizing and configuration of the BDI hosts.

■ The hardware sizing and configuration of the applications that are connected to
the BDI.

There are other factors that determine the performance of the overall system.

■ Number of partitions and threads used by the batch jobs.

■ Item-count and fetchSize used in the downloader-transporter batch job.

■ Item-count used in the uploader batch job.

■ Size of the data set

Performance Tuning Downloader-Transporter Jobs
Performance of the Downloader-Transporter job can be tuned using the following
options.

■ Partition

■ Thread

■ Item-count

■ fetchSize

Default values for "Partition" and "Thread" are 10. The Downloader-Transporter job
splits the data set rows among 10 partitions. If there are lot of rows in a data set,
increasing partitions and threads allow more parallel processing of the data, and can
improve the performance.

Keep the partition and thread values the same so that a thread is assigned to each
partition by Batch runtime. If there are more partitions than threads, Batch runtime
won't start a partition until a thread is available to run.

Partition and Thread values for the Downloader-Transporter job can be changed from
the "Manage Configurations" tab of the Job Admin GUI. Partition and Thread values
can be changed just for an interface module.

The Default value for "item-count" and "fetchSize" is 1000. Item-count is an attribute of
"chunk" element and "fetchSize" is a property in the Downloader-Transporter job xml.

Performance Tuning Uploader Jobs

12-2 Oracle Retail Bulk Data Integration Implementation Guide

The Downloader-Transporter job reads 1000 records from the database and sends data
to Receiver Service for the destination. If performance of a Downloader-Transporter
job is not meeting expectations even after changing partitions and threads, increasing
the "item-count" and "fetchSize" values may improve the performance as it reduces the
number of round trips to the database.

Memory utilization will increase as you increase the "item-count" value.

Performance Tuning Uploader Jobs
Performance of an Uploader job can be tuned using the following options.

■ Partition

■ Thread

■ Item-count

Default values for "Partition" and "Thread" are 10. The Uploader job splits the list of
files among 10 partitions.

If a Downloader-Transporter job creates a lot of files, increasing partitions and threads
allow parallel processing of more files, and can thus improve the performance.

Partition and thread values are typically the same so that a thread is assigned to each
partition by batch runtime. If there are more partitions than threads, the batch runtime
won't start a partition until a thread is available to run.

Partition and Thread values for the Uploader job can be changed from the "Manage
Configurations" tab of the Job Admin GUI. Partition and Thread values can be
changed just for an interface module.

The Default value for "item-count" is 1000. It is an attribute of the "chunk" element in
the Uploader job xml. The Uploader job reads 1000 records from a file or list of files
and then inserts/updates the data in the inbound table.

If performance of an Uploader job is not meeting expectations even after changing
partitions and threads, increasing the "item-count" value may improve the
performance as it reduces the number of round trips to the database. Memory
utilization will increase as you increase the "item-count" value.

13

Job Admin REST Endpoints 13-1

13 Job Admin REST Endpoints

Batch service is a RESTful service that provides various endpoints to manage batch
jobs in Job Admin.

The endpoint "discover" can be used to identify all endpoints provided by Job Admin.

REST Resource HTTP Method Description

/discover GET Lists all available
endpoints in Job
Admin

/batch/jobs GET Gets all available
batch jobs

/batch/jobs/{jobNa
me}

GET Gets all instances for
a job

/batch/jobs/{jobNa
me}/executions

GET Gets all executions
for a job

/batch/jobs/executio
ns

GET Gets all executions

/batch/jobs/currentl
y-running-jobs

GET Gets currently
running jobs

/batch/jobs/{jobNa
me}/{jobInstanceId}/
executions

GET Gets job executions
for a job instance

/batch/jobs/{jobNa
me}/{jobExecutionId}

GET Gets job instance and
execution for a job
execution id

/batch/jobs/{jobNa
me}

POST Starts a job
asynchronously

/batch/jobs/executio
ns/{jobExecutionId}

POST Restarts a stopped or
failed job

/batch/jobs/executio
ns

DELETE Stops all running job
executions

/batch/jobs/executio
ns/{jobExecutionId}

DELETE Stops a job execution

/batch/jobs/executio
ns/{jobExecutionId}

GET Gets execution steps
with details

/batch/jobs/executio
ns/{jobExecutionId}/
steps

GET Gets execution steps

13-2 Oracle Retail Integration Bus Implementation Guide

/batch/jobs/executio
ns/{jobExecutionId}/
steps/{stepExecution
Id}

GET Gets step details

/batch/jobs/job-def-
xml-files

GET Gets all job xml files

/telemetry/jobs GET Returns runtime job
metrics between
fromTime and toTime

REST Resource HTTP Method Description

A

Process Schema A-1

AProcess Schema

The process instrumentation captures the state of the process at the beginning and end
of each activity. This information is persisted into the process schema. For each activity
there will be two records, one for before activity and the other for after activity.

BDI_PROCESS_DEFINITION

BDI_ACTIVITY_EXEC_INSTANCE

Table Name Description

BDI_PROCESS_DEFINITION This table stores all the process flow definitions. It is
loaded at deployment time.

BDI_PROCESS_EXEC_
INSTANCE

This table tracks all the process flow executions. There is a
row for each process flow execution.

BDI_ACTIVITY_EXEC_
INSTANCE

This table tracks all the activity executions. There are 2
rows for each activity execution. One to store the before
context and one to store after context

BDI_ACTIVITY_DYNAMIC_
CONFIG

This table stores the user runtime choices like SKIP,
HOLD etc at activity level

BDI_SYSTEM_OPTIONS This table has all the system level information like URLs,
credential aliases etc.

BDI_EMAIL_NOTIFICATION This table persists all the process email notifications.

BDI_PROCESS_CALL_STACK This table stores call stack for processes.

BDI_EXTERNAL_VARIABLE This table does temporary storage of variables during
process execution.

Column Type Comments

PROCESS_NAME VARCHAR2(255) Name of the process

PROCESS_CREATE_TIME TIMESTAMP Timestamp when the process was loaded
to database

PROCESS_DEF_
CONTENT

CLOB The Process Flow DSL

Column Type Comments

ACTIVITY_EXEC_ID VARCHAR2(255) System generated id for activity instance

ACTIVITY_BEGIN_OR_
END

VARCHAR2(255) "B" for Before Image, "A" for after image

A-2 Oracle Retail Bulk Data Integration Implementation Guide

BDI_PROCESS_EXEC_INSTANCE

BDI_ACTIVITY_DYNAMIC_CONFIG

BDI_EMAIL_NOTIFICATION

ACTIVITY_EVENT_TIME TIMESTAMP Time when he activity occurred

ACTIVITY_NAME VARCHAR2(255) Name of the activity

ACTIVITY_SEQ_NBR NUMBER Sequence number of the activity

ACTIVITY_STATUS NUMBER Activity Status

PROCESS_EXECUTION_
ID

VARCHAR2(255) Process Execution Id of the process
instance that initiated the activity

PROCESS_VARIABLES BLOB Serialized process variable map

Column Type Comments

PROCESS_
EXECUTION_ID

VARCHAR2(255) Process Execution Id
of the process
instance that initiated
the activity.

PROCESS_NAME VARCHAR2(255) Name of the process

PROCESS_EXEC_
START_TIME

TIMESTAMP Time when the
process execution
started

PROCESS_EXEC_
END_TIME

TIMESTAMP Time when the
process execution
started

PROCESS_STATUS VARCHAR2(255) Process status

Column Type Comments

PROCESS_NAME VARCHAR2(255) Name of the process

ACTIVITY_NAME VARCHAR2(255) Name of the activity

HOLD_FLAG VARCHAR2(255) To hold the activity

SKIP_FLAG VARCHAR2(255) To skip the activity

SKIP_OR_HOLD_
EXPIRATION

TIMESTAMP Time when skip or
hold activity expires.

COMMENTS VARCHAR2(255) Comments

INVOKE_
CALLBACK_
SERVICE

VARCHAR2(255) Invoke any callback
service

USER_NAME VARCHAR2(255) Username

CALLBACK_
SERVICE_URL_
ALIAS

VARCHAR2(255) Callback Service URL
Alias

CALLBACK_
SERVICE_URL

VARCHAR2(255) Callback Service URL

Column Type Comments

Process Schema A-3

BDI_SYSTEM_OPTIONS

Column Type Comments

EMAIL_
NOTIFICATION_ID

VARCHAR2(255) Process Execution Id
of the process
instance
that initiated the
activity

APP_NAME VARCHAR2(255) Name of the
application

EMAIL_
NOTIFICATION_TO

VARCHAR2(255) EMail Ids to whom
notification will be
sent

EMAIL_
NOTIFICATION_
SUBJECT

VARCHAR2(255) Notification subject

EMAIL_
NOTIFICATION_
CONTENT

VARCHAR2(255) Notification content

EMAIL_
NOTIFICATION_
DATETIME

TIMESTAMP At what time
notification sent

EMAIL_
NOTIFICATION_
TYPE

VARCHAR2(255) Type of information

ACTION_STATUS VARCHAR2(255) status
(PENDING/COMPL
ETED)

Column Type Comments

VARIABLE_NAME VARCHAR2(255) Name of system variable

APP_TAG VARCHAR2(255) The application name

VARIABLE_VALUE VARCHAR2(255) Value of the variable

A-4 Oracle Retail Bulk Data Integration Implementation Guide

B

Process Flow REST Endpoints B-1

BProcess Flow REST Endpoints

The endpoint "discover" can be used to identify all endpoints provided by Process
Flow.

REST Resource
HTTP
Method Description

/discover GET Lists all available endpoints

/batch/processes/operator/{pro
cessName}

POST Start a new Process Flow execution

/batch/processes/executions/{p
rocessName}

GET List Process Executions for the process
name

/batch/processes/executions GET List all process execution ids

/batch/processes/executions/st
atus/{status}

GET List all process execution ids for the
specified status

/batch/processes/executions/ti
me/{startTime}/{endTime}

GET List all process execution ids for the
specified time range

/batch/processes/external-varia
bles

GET List external variables

/batch/processes/external-varia
bles

PUT Create external variables

/batch/processes/external-varia
bles

POST Update external variables

/batch/processes/external-varia
bles/{key}

DELETE Delete external variable

/batch/processes/currently-run
ning-processes

GET List all the currently running process
flows

/batch/processes GET Get all the available process definitions

/batch/processes/{processNam
e}

GET Get process DSL for the specified process

/batch/processes/executions/{p
rocessName}/{processExecution
Id}/activities/{activityExecution
Id}

GET Get all the activities for the process flow
execution

/batch/processes/{processNam
e}/activities

GET Get all the activities for the process
specified

/batch/processes/operator/{pro
cessName}/{processExecutionId
}

POST Restart a process execution instance

B-2 Oracle Retail Bulk Data Integration Implementation Guide

/batch/processes/operator/{pro
cessName}/resolve

POST Resolves stranded process by setting the
status of process to PROCESS_FAILED

/batch/processes/{processNam
e}/{processExecutionId}

DELETE Stops running process

/batch/processes/executions DELETE Stops all running processes

/batch/processes/{processNam
e}/activities/{activityName}

POST Sets skip, hold flags for activity. Query
parameters that can be passed with this
end point - "skip", "hold",
"actionExpiryDate", "comments".

/batch/processes/{processNam
e}/activities/{activityName}

GET Returns dynamic configuration for
activity

/telemetry/processes GET Returns process runtime metrics between
fromTime and toTime

REST Resource
HTTP
Method Description

C

Scheduler REST Endpoints C-1

CScheduler REST Endpoints

Scheduler provides RESTful services to retrieve information about schedules and run
schedule manually.

The endpoint "discover" can be used to identify all endpoints provided by Scheduler.

REST Resource
HTTP
Method Description

/discover GET Lists all the available Scheduler REST
resources

/batch/schedules GET Returns all the schedules in the
application (including active, inactive and
disabled schedules)

/batch/schedules/active-schedu
les

GET Returns all active schedules

/batch/schedules/{scheduleNa
me}

GET Returns the schedule definition of the
specified schedule

/batch/schedules/upcoming-sc
hedules/days/{days}

GET Returns the upcoming schedules from
now to next number of {days} specified

/batch/schedules/upcoming-sc
hedules

GET Returns the upcoming schedules for the
next 1 day from now

/batch/schedules/executions/{s
cheduleName}

GET Returns all the historical schedule
executions of the given schedule since the
beginning

/batch/schedules/executions/p
ast/days/{days}

GET Returns the historical schedule executions
of the given schedule for past number of
{days}

/batch/schedules/executions/f
ailed

GET Returns all the failed executions for all the
schedules since the beginning

/batch/schedules/executions/t
oday

GET Returns today's schedule executions
starting from midnight today (12:00 a.m.)
to now

/batch/schedules/executions/t
oday/completed

GET Returns today's schedule executions that
are either in 'Triggered' status (for async
actions) or in 'Completed' status (for sync
actions), starting from midnight today
(12:00 a.m.) to now

/batch/schedules/executions/t
oday/failed

GET Returns today's schedule executions that
are in 'Failed' status, starting from
midnight today (12:00 a.m.) to now

C-2 Oracle Retail Bulk Data Integration Implementation Guide

/batch/schedules/executions/p
ast/days/{days}

GET Returns schedule executions for last n
days

/batch/schedules/operator/run
-schedule-now/{scheduleName}

POST Runs the specified schedule, that is,
executes the Schedule Action of the
schedule and returns the Schedule
Execution detail response.

This is synchronous invocation, so client
needs to wait for the response.

/batch/schedules/executions/ti
me/{fromDateTime}/{toDateTim
e}

GET Returns schedule executions between
from and to time

REST Resource
HTTP
Method Description

D

System Setting Service D-1

DSystem Setting Service

The System Setting service is a RESTful service available in all BDI apps (Job Admin,
Process Flow and Scheduler) that provides endpoints to manage system option
parameters and credentials to be used by the BDI apps. The system options are stored
in the BDI_SYSTEM_OPTIONS table.

REST Resource HTTP Method Description

/system-setting/system-options GET Gets all system options from BDI_
SYSTEM_OPTIONS table

/system-setting/system-options PUT Creates a system option in BDI_
SYSTEM_OPTIONS table. Only
admin user is allowed to perform
this operation.

/system-setting/system-options POST Updates a system option in BDI_
SYSTEM_OPTIONS table. Only
admin user is allowed to perform
this operation.

/system-setting/system-options/{
key}

DELETE Deletes a system option from BDI_
SYSETM_OPTIONS table. Only
admin user is allowed to perform
this operation.

/system-setting/system-options/{
key}

GET Gets a system option from BDI_
SYSTEM_OPTIONS table

/system-setting/system-logs GET Gets system logs

/system-setting/system-seed-data GET Gets system seed data file

/system-setting/system-seed-data
/reset-after-bounce

POST Resets system seed data after bounce

/system-setting/system-seed-data
/reset-now

POST Resets system seed data now

/system-setting/system-credentia
ls

GET Gets system credentials. Only admin
user is allowed to perform this
operation.

/system-setting/system-credentia
ls

PUT Creates system credentials. Only
admin user is allowed to perform
this operation.

/system-setting/system-credentia
ls

POST Updates system credentials. Only
admin user is allowed to perform
this operation.

Managing System Options using curl

D-2 Oracle Retail Bulk Data Integration Implementation Guide

Managing System Options using curl
Here are examples of curl commands to list/create/update/delete system options for
Process Flow. These commands can be run for Job Admin, and Scheduler as well.
Create/update/delete commands can only be run by administrator.

Create system option
This command creates "reimappJobAdminBaseUrlUserAlias" system option in Process
Flow.

curl --user userId:password -i -X PUT -H "Content-Type:application/json"
http://server:port/bdi-process-flow/resources/system-setting/system-options -d
'{"key":"reimappJobAdminBaseUrlUserAlias" , "value":" GET_FROM_WALLET:GET_
FROM_WALLET "}'

Update system option
This command updates "reimappJobAdminBaseUrl" system option in Process Flow.

curl --user userId:password -i -X POST -H "Content-Type:application/json"
http://server:port/bdi-process-flow/resources/system-setting/system-options -d
'{"key":"reimappJobAdminBaseUrl" ,
"value":"http://server:port/reim-batch-job-admin"}'

Delete system option
This command deletes "reimappJobAdminBaseUrl" system option from Process Flow.

curl --user userId:password -i -X DELETE -H "Content-Type:application/json"
http://server:port/bdi-process-flow/resources/system-setting/system-options -d
'{"key":"reimappJobAdminBaseUrl"}'

List system options
This command lists all system options from Process Flow.

curl --user userId:password -i -X GET -H "Content-Type:application/json"
http://server:port/bdi-process-flow/resources/system-setting/system-options

Managing credentials using curl
Here are examples of curl commands to list/create/update/delete credentials for
Process Flow. These commands can be run for Job Admin, and Scheduler as well.
Create/update/delete commands can only be run by administrator.

Create credential
This command creates a credential in Process Flow.

/system-setting/system-credentia
ls/{key}

DELETE Deletes system credentials. Only
admin user is allowed to perform
this operation.

/system-setting/reset-cache POST Resets system option cache

REST Resource HTTP Method Description

Managing credentials using curl

System Setting Service D-3

curl --user userId:password -i -X PUT -H "Content-Type:application/json"
http://server:port/bdi-process-flow/resources/system-setting/system-credentials -d
'{"userAlias":" reimappJobAdminBaseUrlUserAlias", "userName":"reimjobadmin" ,
"userPassword":"xyzxyz"}'

Update credential
This command updates a credential in Process Flow.

curl --user userId:password -i -X POST -H "Content-Type:application/json"
http://server:port/bdi-process-flow/resources/system-setting/system-credentials -d
'{"userAlias":" reimappJobAdminBaseUrlUserAlias", "userName":"reimjobadmin" ,
"userPassword":"wwwqqqq"}'

Delete credential
This command deletes a credential from Process Flow.

curl --user userId:password -i -X GET -H "Content-Type:application/json"
http://server:port/bdi-process-flow/resources/system-setting/system-credentials -d
'{"key":"reimappJobAdminBaseUrl"}'

List Credentials
This command lists credentials from Process Flow.

curl --user userId:password -i -X GET -H "Content-Type:application/json"
http://server:port/bdi-process-flow/resources/system-setting/system-credentials.

Managing credentials using curl

D-4 Oracle Retail Bulk Data Integration Implementation Guide

E

Sample Extractor - PL/SQL application code that calls procedures in PL/SQL package E-1

ESample Extractor - PL/SQL application code
that calls procedures in PL/SQL package

BEGIN
-- First call beginDataSet of the corresponding interface module datactl pkg
before loading data to interface tables.
-- Here interfacemodule is Diff_Fnd and dataload is full set. If partial dataset,
then call beginPartialSet_Diff_Fnd

IF Diff_Fnd_Out_DataCtl.beginFullSet_Diff_Fnd(O_datacontrol_id,O_error_
message) = 0 THEN

DBMS_OUTPUT.PUT_LINE('interfaceModuleDataControlId: ' || O_
datacontrol_id);

ELSE
DBMS_OUTPUT.PUT_LINE('beginFullSet_Diff_Fnd error: ' || O_error_

message);
Return;

END IF;
-- Call application PL/SQL package to populate outbound interface table
-- Then call endDataSet of the corresponding interface module datactl pkg

IF Diff_Fnd_Out_DataCtl.onSuccEndSet_Diff_Fnd(O_datacontrol_id,O_error_
message) = 0 THEN

DBMS_OUTPUT.PUT_LINE('Successfully called onSuccEndSet');
COMMIT;

ELSE
DBMS_OUTPUT.PUT_LINE('onSuccEndSet error: ' || O_error_message);
ROLLBACK;

END IF;
EXCEPTION
WHEN OTHERS
THEN

Call onErrDiscardSet in case of an error
IF Diff_Fnd_Out_DataCtl.onErrDiscardSet_Diff_Fnd(O_datacontrol_id,O_

error_message) = 0 THEN
DBMS_OUTPUT.PUT_LINE('Successfully called onErrEndSet');

ELSE
DBMS_OUTPUT.PUT_LINE('onErrEndSet error: ' || O_error_message);

END IF;
END;

E-2 Oracle Retail Bulk Data Integration Implementation Guide

F

Glossary F-1

FGlossary

Batch Batch is an industry metaphor for background bulk
processing.

Batch Processing Batch processing is the execution of a series of jobs in a
program without manual intervention (non-interactive).

Batch Job The series of steps in a batch process are often called a
"job" or "batch job". A job contains one or more steps that
specifies the sequence in which steps must be executed.

Batchlet In Java Batch a Batchlet is type of batch step that can be
used for any type of background processing that does not
explicitly call for a chunk oriented approach.

Batch Service Batch service is a RESTful service that provides
endpoints to manage Batch Jobs in BDI. The Batch
Service is part of Job Admin.

BDI The Oracle Retail Bulk Data Integration Infrastructure
(BDI) is an Enterprise level infrastructure product for
moving bulk data between Sender Applications (for
example RMS) and Receiver Applications (for
exampleSIM, RXM).

Bulk Integration Flow A bulk integration flow moves data for one family from
source to destination application(s).

CSV file Comma separated values file with .csv extension.

Data Service Data Service is a RESTful service that is used to get data
set information using job information.

Data Set A data set consists of the rows between a begin and end
sequence number in the interface table.

Data Set Type Type of data set - FULL or PARTIAL

Downloader Data Control
Table

The Downloader data control tables act as a handshake
between the Extractor and Downloader

Downloader-Transporter
Job

A Downloader-Transporter Job downloads a data set
from Outbound Interface Tables for a family and streams
data to a BDI destination application using the Receiver
Service.

Extractor Job An Extractor job extracts data for a family from sender
(source) system and moves the data to Outbound
Interface Tables.

F-2 Oracle Retail Bulk Data Integration Implementation Guide

Family BDI data flows, identical to the other styles of Oracle
Retail integration products, are organized by retail
functional areas such as Store, Items, PO, Inventory and
so on. These functional areas are called families (for
example DiffGrp). Each family can contain one or more
tables (for example DiffGrp and DiffGrp_Dtl).

fetchSize Number of records fetched from the database and
cached.

Importer This is a destination application component that takes
data from the inbound interface tables and updates the
application tables.

Importer Job The Importer Job imports data set for an Interface
Module from Inbound Interface Tables into application
specific transactional tables. Importer jobs are application
(for example SIM/RXM) specific jobs.

Inbound Control Tables Receiving applications use the data set metadata
information in the importer control tables to trigger the
import process.

Interface Module Message family (for example DiffGrp_Fnd,
InvAvailStore_Tx). An interface module can contain one
or more interfaces (DiffGrp and DiffGrp_Dtl).

Interface Module XML File Source for creating the DDL for the Interface Tables.

Interface Tables (Outbound
and Inbound)

Interface tables are created in the integration schema of
both on the sender side and receiver side. Sender side
interface tables are called Outbound interface tables and
receiver side tables are called Inbound interface tables.

item-count Number of items read by ItemReader before ItemWriter
writes.

ItemReader ItemReader reads one item at a time from the source.

ItemWriter After "item-count" number of items are read, Item Writer
writes the items.

Job Admin Web application for managing and monitoring batch jobs.

Job Operator Job Operator provides an interface to manage jobs.

Job Repository Job Repository holds information about jobs.

Job Specification language
(JSL)

Logical Partitions A Data Set is divided into logical partitions and the data
in each partition is downloaded by a separate thread. A
Data Set is divided into logical partitions based on the
number of partitions specified in the BDI_DWNLDR_
TRNSMITTR_OPTIONS table and the number of rows in
the data set.

Outbound Control Tables Data Set metadata information is saved in database tables
called the Outbound Control Tables in the BDI
Integration schema of each Sender Application. An entry
in BDI Outbound Control Tables indicates the availability
of data set to the next component.

Receiver Application Application that receives data from another application
through BDI.

Glossary F-3

Receiver Service This is the BDI component that receives the data from the
Downloader-Transporter and stores it in a temporary
storage

Receiver Side Split If there are multiple destinations that receive data from a
Sender Application, this options is to use the Receiver
Service at one destination to receive data from the sender
and then multiple destinations use the data from one
Receiver Service to upload to Inbound Interface Tables.
The requirements for Receiver Side Split are such that:

■ The Receiver Service database schema is shared by
all the destinations.

■ The File system is shared by all destinations.

Seed Data

Seed data for Downloader-Transporter Jobs or Uploader
job is loaded to the database during the deployment of
Job Admin

Sender Application

Application that send data to other applications through
BDI.

Sender Side Split

In the case of Sender Side Split (SSS), the data is extracted
once from the source system. The extracted data is
transmitted to each destination separately. Unlike point
to point topology, the extraction is done only once
regardless of the number of destinations.

Step

A step contains all the necessary logic and data to
perform actual processing. A chunk-style step contains
ItemReader, ItemProcessor and ItemWriter.

Uploader

The Uploader takes data from the temporary storage and
populates the inbound interface tables.

Uploader Interface Module
Data Control Table

This table acts as a handshake between Downloader and
Uploader jobs.. An entry in this table indicates to
Uploader Job that a data set is ready to be uploaded.

Uploader Job An Uploader Job uploads data from CSV files into
Inbound Interface Tables for an Interface Module. It
divides files into logical partitions and each partition is
processed concurrently.

F-4 Oracle Retail Bulk Data Integration Implementation Guide

	Contents
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Customer Support
	Review Patch Documentation
	Improved Process for Oracle Retail Documentation Corrections
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	1 Introduction
	Oracle Retail Enterprise Integration Products and Styles
	Standards and Specifications
	Java Platform Enterprise Edition (Java EE)
	Java Batch – JSR 352
	Java EE Server
	Java Batch Overview

	2 Job Administrator
	Job Admin Core Components
	Extractor Job
	Downloader-Transporter job
	Receiver Service
	Uploader Job
	Uploader Job Configuration
	Importer Job

	3 Job Admin Services
	Job Admin RESTful Services
	Receiver Service
	Batch Service
	Data Service
	Configuration of Job Admin
	Job Admin Customization

	4 Job Admin UI
	Job Admin UI Security
	Authentication
	Authorization

	Monitoring Batch Jobs Using BDI Job Admin
	Batch Summary Tab
	Manage Jobs Tab
	Job Executions
	Job Launch
	Job Details
	System Logs Tab
	Sample Begin Job Banner
	Sample End Job Banner

	Diagonostics Tab
	Outbound Job Execution Errors
	Inbound Job Execution Errors
	Trace Data
	Sender Data
	Receiver Data
	Receiver Transactions
	Receiver Transmission Details - Partition Level
	Receiver Transmission Details - Block Level
	Uploader Data
	Inbound job Executions
	Importer Data Control

	Manage Configurations
	Outbound Interface Controls
	Inbound Interface Controls
	System Options

	Job Admin Troubleshooting
	BDI apps deployment Error
	BDI Job Admin runtime WSMException
	REST Service from SOAP UI for Downloader and Transporter job
	BDI Job Admin not able to find UploaderJob.xml file
	Job Fails and Job Admin Log Files Contain No Details of the Failure

	5 Process Flow
	Process Flow
	DSL (Domain Specific Language)
	Begin Activity
	Activity
	End Activity
	Process Variables
	External Variables
	Statuses

	Process Flow DSL
	Process Flow DSL characteristics
	DSL Keywords
	Process Flow API
	Process Flow Variables

	Process Flow Instrumentation
	Process Flow Monitor Web Application
	Process Flow Live tab
	Manage Process Flow Tab
	Process Flow Executions
	Process Flow Configurations
	Launch Process Flow
	Process Flow Details
	Historical Process Flow Executions Tab
	Manage Configurations Tab
	System Logs Tab
	Process Flow Notification Feature

	Persisting Process Notifications
	Process Restart
	Statuses
	Activity Features
	Skip Activity
	Hold/Release Activity
	Bulk Skip/Hold
	Callback Service
	How to start Process Flow with input parameters?
	Call back from Processflow
	How to invoke the Callback Service declaratively
	How to invoke the Callback Service programmatically

	Process Execution Trace
	Process Metrics Service
	Process Security

	Customizing Process Flows
	Process Flow DSL
	APIs
	How to modify a Process Flow

	Sub Processes
	Process Schema
	Process Customization
	REST Interface
	Troubleshooting
	BDI Process flow runtime XML UnmarshallException
	BDI Process flow stuck in running state

	Process FlowDidNot Start
	Deleted process flow still listed in the UI
	Best Practices for Process Flow DSL

	6 BDI Scheduler
	Scheduler Core Concepts
	Schedule Types
	Interval Schedules
	Calendar Schedules

	Scheduling Mechanisms
	Simple Scheduling
	Advanced Scheduling

	Schedule Frequency
	Schedule Start Datetime
	Schedule End Datetime
	Recurrence / Repeat Interval
	Schedule Next Run Datetime
	Schedule Timezone

	Schedule Action
	Schedule Action Type
	Sync Action
	Async Action
	Schedule Action Execution Status
	Schedule Action Type and Execution Status

	Schedule Status

	Scheduler Runtime
	Scheduler Startup
	Schedule Runtime Execution
	Schedule Execution - BDI Process Flows
	Schedule Execution - Async Action
	Schedule Execution - Sync Action
	Schedule Execution Failover
	Schedule Notification
	Persisting Schedule Notifications

	Scheduler Infrastructure Schema
	Scheduler REST Services
	Scheduler Console
	Schedule Summary
	Schedules and Executions
	Upcoming Schedules
	Schedule Executions Failed Today
	Schedule Executions Completed / Triggered Today
	Schedule Executions In Progress Today
	Schedules Past Due

	Manage Schedules
	Creating Schedule
	Basic Info
	Schedule Action
	Schedule Frequency
	Schedule Notification

	Updating Schedule
	Disabling Schedule
	Enabling Schedule
	Deleting Schedule
	Schedule Manual Run
	Schedule Executions
	Manage Configurations
	System Logs

	Scheduler Security Considerations
	Scheduler Security

	Scheduler Operational Considerations
	Users Roles for Monitoring and Administration
	Monitoring Schedules
	Schedule Action Execution Log

	Scheduler Log Files
	Maintaining Historical Schedule Executions

	Scheduler Customization
	Seed Data Reload
	Customizing Seed Data Schedules

	Customizing Schedule Actions
	Scheduler Troubleshooting
	Scheduler Known issues

	7 CLI Tools
	BDI CLI Job Executor
	Tool Setup
	Tool Usage

	BDI CLI Transmitter
	Tool Setup
	Tool Usage
	File Processing
	Output Logs
	Error Reprocessing

	8 BDI Data Integration Topologies
	Point to Point Topology
	Sender side split
	Receiver Side Split

	9 Pre-implementation Considerations
	BDI Software Lifecycle Management
	Preparation Phase
	Application Assembly Phase
	Deployment Phase
	Operation Phase
	Maintenance Phase

	Physical Location Considerations
	High Availability Considerations
	WebLogic Server Cluster Concepts
	bdi-<app> application and WebLogic Application Server Cluster
	Logging
	Update Log Level
	Create/Update/Delete System Options
	Create/Update/Delete System Credentials
	Scheduler Configuration Changes for Cluster

	10 Deployment Architecture and Options
	Recommended Deployment Options
	Distributed
	Centralized
	BDI-External Application
	Installation details

	11 Implementation Process
	12 Performance Considerations
	Performance Tuning Downloader-Transporter Jobs
	Performance Tuning Uploader Jobs

	13 Job Admin REST Endpoints
	A Process Schema
	B Process Flow REST Endpoints
	C Scheduler REST Endpoints
	D System Setting Service
	Managing System Options using curl
	Create system option
	Update system option
	Delete system option
	List system options

	Managing credentials using curl
	Create credential
	Update credential
	Delete credential
	List Credentials

	E Sample Extractor - PL/SQL application code that calls procedures in PL/SQL package
	F Glossary

